Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page A-1 of A-5

APPENDIX A

Land Use Distribution in the Hiwassee River Watershed

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page A-2 of A-5

				Hiwa	ssee River	Subwaters	sheds			
Land Use	Agency Creek Price		Creek Rogers Creek		Spring Creek		Hiwassee River			
	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]
Deciduous Forest	3260	36.4	1464	41.7	16813	52.1	4329	40.1	4385	28.8
Emergent Herbaceous Wetlands	21	0.2	0	0.0	1	0.0	0	0.0	161	1.1
Evergreen Forest	1838	20.5	827	23.5	5264	16.3	787	7.3	3089	20.3
High Intensity Commercial/Industr ial/Transp.	12	0.1	0	0.0	25	0.1	15	0.1	229	1.5
High Intensity Residential	0	0	0	0	0	0	0	0	24	0.2
Low Intensity Residential	31	0.3	3	0.1	55	0.2	30	0.3	179	1.2
Mixed Forest	1531	17.1	613	17.4	5337	16.5	1248	11.6	2360	15.5
Open Water	0	0.0	1	0.0	20	0.1	2	0.0	769	5.0
Other Grasses (Urban/recreation; e.g. parks)	10	0.1	0	0.0	8	0.0	14	0.1	133	0.9
Pasture/Hay	1798	20.1	491	14.0	3719	11.5	3452	32.0	2293	15.0
Quarries/Strip Mines/Gravel Pits	0	0.0	0	0.0	14	0.0	12	0.1	155	1.0
Row Crops	364	4.1	110	3.1	616	1.9	812	7.5	806	5.3
Transitional	0	0.0	0	0.0	210	0.7	94	0.9	105	0.7
Woody Wetlands	98	1.1	6	0.2	189	0.6	0	0.0	557	3.7
Total	8963	100.0	3515	100.0	32271	100.0	10795	100.0	15245	100.0

Table A-1. MRLC Land Use Distribution of Hiwassee River Subwatersheds

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page A-3 of A-5

		Hiwassee River Subwatersheds								
Land Use	North Mor	North Mouse Creek Chestuee Creek		Little Chestuee Creek		Hawkins Branch		Dairy Branch		
	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]
Deciduous Forest	11684	25.2	4753	19.1	1448	25.3	93	15.8	20	7.2
Emergent Herbaceous Wetlands	1	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Evergreen Forest	7053	15.2	4034	16.2	1334	23.3	66	11.2	26	9.3
High Intensity Commercial/Industr ial/Transp.	1173	2.5	98	0.4	8	0.1	0	0.0	0	0.0
High Intensity Residential	220	0.5	45	0.2	0	0.0	0	0.0	0	0.0
Low Intensity Residential	805	1.7	361	1.5	14	0.2	9	1.5	0	0.0
Mixed Forest	9308	20.1	5255	21.1	1673	29.3	134	22.7	19	6.8
Open Water	22	0.0	17	0.1	4	0.1	1	0.2	4	1.4
Other Grasses (Urban/recreation; e.g. parks)	430	0.9	222	0.9	0	0.0	0	0.0	0	0.0
Pasture/Hay	12175	26.3	7697	30.9	1052	18.4	241	40.8	155	55.6
Quarries/Strip Mines/Gravel Pits	84	0.2	0	0.0	0	0.0	0	0.0	0	0.0
Row Crops	2985	6.4	2195	8.8	134	2.3	44	7.5	53	19.0
Transitional	141	0.3	223	0.9	51	0.9	1	0.2	0	0.0
Woody Wetlands	238	0.5	0	0.0	0	0.0	0	0.0	0	0.0
Total	46322	100.0	24901	100.0	5719	100.0	590	100.0	279	100.0

Table A-1. MRLC Land Use Distribution of Hiwassee River Subwatersheds (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page A-4 of A-5

		Hiwassee River Subwatersheds								
Land Use	South Mo	ouse Creek Woolen Mill Branch Fillauer Branch		Chatata Creek		Little Chatata Creek				
	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]
Deciduous Forest	1599	16.2	185	12.0	495	18.9	5888	28.1	1530	22.8
Evergreen Forest	746	7.6	43	2.8	203	7.7	2030	9.7	482	7.2
High Intensity Commercial/Industr ial/Transp.	996	10.1	318	20.6	163	6.2	299	1.4	263	3.9
High Intensity Residential	826	8.4	226	14.6	226	8.6	58	0.3	53	0.8
Low Intensity Residential	2536	25.7	486	31.5	767	29.2	508	2.4	335	5.0
Mixed Forest	1433	14.5	136	8.8	435	16.6	3049	14.6	912	13.6
Open Water	6	0.1	4	0.3	1	0.1	2	0.0	1	0.0
Other Grasses (Urban/recreation; e.g. parks)	868	8.8	110	7.1	266	10.1	321	1.5	242	3.6
Pasture/Hay	495	5.0	13	0.8	3	0.1	7324	35.0	2307	34.5
Row Crops	340	3.5	18	1.1	66	2.5	1444	6.9	570	8.5
Transitional	5	0.1	3	0.2	2	0.1	8	0.0	1	0.0
Total	9851	100.0	1542	100.0	2625	100.0	20931	100.0	6696	100.0

Table A-1. MRLC Land Use Distribution of Hiwassee River Subwatersheds (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page A-5 of A-5

		Hiwassee River Subwatersheds								
Land Use	0 0 0 100.	ula Creek 42.7)	Oostanaula Creek (Mile 34.2)		Oostanaula Creek (Mile 26.6)		Oostanaula Creek (Mile 5.7)		Oostanaula Creek at the Mouth	
	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]	[acres]	[%]
Deciduous Forest	460	23.9	1538	13.4	925	14.2	5244	31.8	2785	35.3
Evergreen Forest	251	13.1	1632	14.2	1369	20.9	2266	13.8	2070	26.2
High Intensity Commercial/Industr ial/Transp.	0	0.0	48	0.4	331	5.1	56	0.3	0	0.0
High Intensity Residential	0	0.0	0	0.0	168	2.6	7	0.0	0	0.0
Low Intensity Residential	1	0.1	28	0.2	775	11.9	192	1.2	11	0.1
Mixed Forest	433	22.6	2111	18.3	1609	24.6	3653	22.2	1788	22.7
Open Water	9	0.5	10	0.1	3	0.0	8	0.0	0	0.0
Other Grasses (Urban/recreation; e.g. parks)	0	0.0	14	0.1	328	5.0	130	0.8	0	0.0
Pasture/Hay	546	28.5	4754	41.3	804	12.3	4009	24.3	847	10.7
Quarries/Strip Mines/Gravel Pits	0	0.0	0	0.0	0	0.0	0	0.0	6	0.1
Row Crops	219	11.4	1288	11.2	223	3.4	820	5.0	293	3.7
Transitional	0	0.0	93	0.8	0	0.0	97	0.6	89	1.1
Total	1921	100.0	11517	100.0	6535	100.0	16482	100.0	7890	100.0

Table A-1. MRLC Land Use Distribution of Hiwassee River Subwatersheds (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-1 of B-12

APPENDIX B

Water Quality Monitoring Data

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-2 of B-12

There are a number of water quality monitoring stations that provide data for waterbodies identified as impaired for E. coli in the Hiwassee River watershed. The location of these monitoring stations is shown in Figures 4-10. Monitoring data recorded at these stations for E. coli and fecal coliform are tabulated in Table B-1.

Monitoring Station	Date	E. Coli	Fecal Coliform	
Otation		[cts./100 mL]	[cts./100 mL]	
	6/10/03	1299	NA	
	6/23/03	1986	NA	
AGENC002.1ME	6/25/03	3190	NA	
	7/9/03	9800	NA	
	7/10/03	2240	NA	
	12/15/98	980	860	
	3/9/99	170	770	
	6/8/99	2	13	
	9/14/99	19	16	
	12/14/99	13	430	
	3/15/00	260	3900	
	6/19/00	4	15	
	9/5/00	9	19	
	12/4/00	93	93	
HIWAS013.4MM	3/14/01	>2400	5000	
	9/11/01	4	38	
	3/25/02	170	190	
	9/4/02	3	7	
	12/17/02	52	160	
	3/26/03	40	56	
	6/17/03	2400	2100	
	9/8/03	27	NA	
	12/2/03	54	70	
	3/9/04	1200	770	
	4/27/98	27	70	
	4/28/98	51	104	
	7/13/98	20	34	
	7/14/98	17	110	
HIWAS015.6MM	7/15/98	13	112	
	5/3/99	260	240	
	5/4/99	120	140	
	8/30/99	36	60	
	8/31/99	25	30	
	9/1/99	48	39	

 Table B-1. Water Quality Monitoring Data – Hiwassee River Watershed

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-3 of B-12

Monitoring Station	Date	E. Coli	Fecal Coliform	
Otation		[cts./100 mL]	[cts./100 mL]	
	5/28/03	>2419	NA	
	6/2/03	54.6	NA	
FILLA000.3BR	6/5/03	770	NA	
TILLAUUU.JDIK	6/9/03	1732	NA	
	6/11/03	1299	NA	
	6/23/03	1080	NA	
WMILL000.8BR	3/3/04	>2419	NA	
	5/28/03	727	NA	
	6/2/03	1413	NA	
SMOUS012.7BR	6/5/03	1413	NA	
SW003012.7 BK	6/9/03	>2419	NA	
	6/11/03	1986	NA	
	6/23/03	1520	NA	
	5/28/03	980	NA	
	6/2/03	920	NA	
LCHAT000.3BR	6/5/03	866	NA	
LCHAI 000.3DK	6/9/03	1119	NA	
	6/11/03	1413	NA	
	6/23/03	378	NA	
	8/27/02	200	92	
	10/21/02	410	770	
	11/12/02	23590	25000	
	12/18/02	200	460	
	1/28/03	740	270	
CHATA000.5BR	3/24/03	630	560	
CHATA000.5BK	4/29/03	1320	1500	
	5/19/03	4000	5200	
	8/19/03	1210	850	
	11/4/03	310	560	
	1/13/04	960	640	
	5/11/04	520	730	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-4 of B-12

Monitoring Station	Date	E. Coli	Fecal Coliform	
Station		[cts./100 mL]	[cts./100 mL]	
	12/30/02	4	8	
	2/24/03	1553	1500	
	3/17/03	61	70	
	5/14/03	921	630	
HAWKI000.3PO	6/4/03	96	84	
	7/21/03	76	80	
	8/27/03	150	400	
	10/7/03	649	2000	
	11/20/03	1300	1200	
	12/30/02	>2419	2800	
	2/24/03	7540	7800	
	3/17/03	152	138	
	5/14/03	>2419	3600	
HAWKI001.3PO	6/4/03	260	400	
	7/21/03	>2419	22000	
	8/27/03	2590	2700	
	10/7/03	816	1200	
	11/20/03	2920	2000	
	2/11/04	113	66	
	2/24/03	21720	17000	
	3/17/03	308	470	
	5/14/03	1553	2300	
DAIRY000.4BR	6/4/03	488	600	
DAIR 1000.4DR	7/21/03	291	360	
	8/27/03	649	930	
	10/7/03	63	60	
	11/20/03	>2419	2800	
	2/24/03	36540	17000	
	3/17/03	6	10	
	5/14/03	>2419	11600	
	6/4/03	>2419	4200	
DAIRY001.2BR	7/21/03	328	300	
	8/27/03	7	20	
	10/7/03	8	10	
	11/20/03	>2419	5300	
	2/11/04	>2419	3000	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-5 of B-12

	1			
Monitoring Station	Date	E. Coli	Fecal Coliform	
Otation		[cts./100 mL]	[cts./100 mL]	
	5/28/03	727	NA	
	6/2/03	648	NA	
LCHES001.6MM	6/5/03	1203	NA	
	6/9/03	1046	NA	
	6/11/03	>2419	NA	
	3/2/98	249	168	
	3/11/98	411	350	
	4/13/98	770	660	
	4/14/98	1120	1030	
	4/15/98	687	690	
	11/30/98	172	172	
	12/1/98	157	130	
	2/23/99	460	170	
	5/17/99	870	600	
CHEST042.5MM	5/18/99	210	970	
	8/16/99	250	560	
	8/17/99	820	570	
	11/15/99	120	90	
	11/17/99	160	100	
	5/28/03	547	NA	
	6/2/03	517	NA	
	6/5/03	1553	NA	
	6/9/03	1986	NA	
	6/11/03	816	NA	
	10/22/02	411	300	
	2/19/03	1986	1900	
OOSTA005.8MM	8/20/03	461	340	
	11/5/03	219	420	
	1/14/04	236	176	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-6 of B-12

Monitoring	Date	E. Coli	Fecal Coliform	
Station		[cts./100 mL]	[cts./100 mL]	
	3/26/02	NA	10000	
	5/22/02	NA	400	
	10/1/02	30	120	
	10/29/02	610	1210	
	11/19/02	350	140	
	12/17/02	160	290	
	1/21/03	30	120	
	2/25/03	560	50	
	3/25/03	80	60	
	4/29/03	130	200	
	6/3/03	720	960	
OOSTA026.6MM	6/17/03	1600	960	
	7/30/03	450	560	
	9/3/03	50	140	
	10/1/03	50	40	
	11/18/03	400	460	
	12/9/03	340	380	
	1/26/04	1690	1850	
	2/9/04	200	880	
	3/15/04	320	230	
	4/26/04	210	180	
	5/24/04	60	150	
	6/14/04	90	140	
	12/16/82	NA	19200	
	3/8/83	NA	1290	
	6/7/83	NA	420	
	9/20/83	NA	4400	
	12/13/83	NA	3300	
OOSTA028.4MM	3/13/84	NA	14500	
	6/12/84	NA	100	
	9/11/84	NA	230	
	12/11/84	NA	8700	
	3/12/85	NA	420	
	9/10/85	NA	2300	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-7 of B-12

Monitoring Station	Date	E. Coli	Fecal Coliform	
Oldlon		[cts./100 mL]	[cts./100 mL]	
	12/10/85	NA	280	
	3/11/86	NA	30	
	6/18/86	NA	670	
	9/23/86	NA	400	
	12/9/86	NA	150000	
	3/10/87	NA	40000	
	6/9/87	NA	1730	
	9/15/87	NA	70	
	12/8/87	NA	400	
	3/15/88	NA	10	
	6/7/88	NA	720	
	9/13/88	NA	800	
	12/13/88	NA	200	
	3/7/89	NA	12000	
	6/7/89	NA	4500	
	3/15/90	NA	15000	
	6/13/90	NA	980	
OOSTA028.4MM	9/11/90	NA	3000	
0051A026.411111	12/12/90	NA	30	
	3/12/91	NA	3000	
	6/11/91	NA	460	
	9/10/91	NA	1000	
	12/4/91	NA	26000	
	6/9/92	NA	31000	
	6/10/92	NA	31000	
	9/15/92	NA	420	
	12/9/92	NA	480	
	3/31/93	NA	14700	
	6/23/93	NA	1400	
	12/6/93	NA	12800	
	3/14/94	NA	810	
	6/20/94	NA	1400	
	9/13/94	NA	960	
	12/12/94	NA	1320	
	3/13/95	NA	1260	
	6/12/95	NA	7600	

 Table B-1. Water Quality Monitoring Data – Hiwassee River Watershed (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-8 of B-12

	-	-		
Monitoring Station	Date	E. Coli	Fecal Coliform	
Otation		[cts./100 mL]	[cts./100 mL]	
	9/18/95	NA	2700	
	12/11/95	NA	250	
	3/18/96	NA	1600	
	6/10/96	NA	17000	
	12/15/98	>2419	8000	
	3/9/99	2400	2900	
	5/24/99	NA	3900	
	6/8/99	200	97	
	6/14/99	NA	200	
	7/19/99	NA	670	
	8/11/99	NA	280	
	9/13/99	2400	240	
	12/7/99	820	830	
	3/7/00	370	600	
	6/12/00	140	200	
	9/19/00	870	930	
	12/11/00	160	320	
	3/13/01	2400	8700	
OOSTA028.4MM	9/11/01	200	170	
	3/25/02	1	10	
	10/22/02	260	270	
	2/19/03	1553	1800	
	7/30/03	560	250	
	8/20/03	411	440	
	9/3/03	120	300	
	10/1/03	70	380	
	11/5/03	365	220	
	11/18/03	400	690	
	12/9/03	310	320	
	1/14/04	345	220	
	1/26/04	1650	1720	
	2/9/04	600	850	
	3/15/04	250	300	
	4/26/04	160	480	
	5/24/04	80	170	
	6/14/04	60	80	
		l - -		

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-9 of B-12

Monitoring Station	Date	E. Coli	Fecal Coliform	
Otation		[cts./100 mL]	[cts./100 mL]	
	3/26/02	NA	12000	
	5/22/02	NA	2900	
	10/1/02	160	550	
	10/29/02	2900	6000	
	11/19/02	550	710	
	12/17/02	300	210	
	1/21/03	300	410	
	2/25/03	340	250	
	3/25/03	60	120	
	4/29/03	40	240	
	6/3/03	1200	1300	
OOSTA030.0MM	6/17/03	1740	1680	
	7/30/03	120	270	
	9/3/03	90	220	
	10/1/03	150	210	
	11/18/03	60	80	
	12/9/03	170	160	
	1/26/04	2760	2850	
	2/9/04	150	190	
	3/15/04	100	280	
	4/26/04	920	870	
	5/24/04	140	270	
	6/14/04	50	330	
	3/26/02	NA	14000	
	5/22/02	NA	3500	
	10/1/02	130	510	
	10/29/02	2500	6000	
	11/19/02	1350	560	
OOSTA030.1MM	12/17/02	510	420	
	1/21/03	190	230	
	2/25/03	380	220	
	3/25/03	100	100	
	4/29/03	100	230	
	6/3/03	600	840	

Monitoring	Date	E. Coli	Fecal Coliform
Station		[cts./100 mL]	[cts./100 mL]
00074020 400	6/17/03	1740	1560
	7/30/03	240	380
	9/3/03	90	130
	10/1/03	130	260
	11/18/03	80	50
	12/9/03	220	200
OOSTA030.1MM	1/26/04	1990	2200
	2/9/04	980	1200
	3/15/04	250	370
	4/26/04	180	310
	5/24/04	200	360
	6/14/04	80	400
	7/30/03	2750	2140
	9/3/03	410	500
OOSTA033.6MM	10/1/03	400	870
	11/18/03	1200	1180
	12/9/03	890	740
	1/26/04	2090	2120
	2/9/04	800	1000
	3/15/04	210	250
	4/26/04	880	1130
	5/24/04	520	1100
	6/14/04	250	1490
OOSTA035.1MM	7/30/03	1250	1850
	9/3/03	100	310
	10/1/03	290	720
	11/18/03	40	120
	12/9/03	190	120
	1/26/04	2610	2500
	2/9/04	100	100
	3/15/04	280	330
	4/26/04	720	1410
	5/24/04	380	810
	6/14/04	130	50

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-10 of B-12 Table B-1. Water Quality Monitoring Data – Hiwassee River Watershed (Cont.)

Monitoring	Date	E. Coli	Fecal Coliform
Station		[cts./100 mL]	[cts./100 mL]
NMOUS004.2MM	8/27/02	100	200
	10/21/02	310	380
	11/12/02	8620	9000
	12/18/02	100	130
	1/28/03	200	88
	3/24/03	410	200
1111000004.211111	4/29/03	200	370
	5/19/03	4570	5000
	8/19/03	410	800
	11/4/03	310	320
	1/13/04	410	330
	5/11/04	310	130
	6/10/03	517	NA
SPRIN003.8MM	6/23/03	770	NA
	6/25/03	1120	NA
	7/9/03	1046	NA
	7/10/03	770	NA
	6/10/03	980	NA
	6/23/03	1046	NA
SPRIN015.6MM	6/25/03	866	NA
	7/9/03	686	NA
	7/10/03	1119	NA
ROGER002.7MM	6/10/03	517	NA
	6/23/03	435	NA
	6/25/03	613	NA
	7/9/03	461	NA
	7/10/03	770	NA
ROGER014.2MM	6/10/03	920	NA
	6/23/03	816	NA
	6/25/03	1203	NA
	7/9/03	1413	NA
	7/10/03	1413	NA

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-11 of B-12 Table B-1. Water Quality Monitoring Data – Hiwassee River Watershed (Cont.)

Monitoring Station	Date	E. Coli	Fecal Coliform
		[cts./100 mL]	[cts./100 mL]
PRICE004.4ME	6/10/03	547	NA
	6/23/03	248	NA
	6/25/03	360	NA
	7/9/03	980	NA
	7/10/03	1986	NA

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page B-12 of B-12 Table B-1. Water Quality Monitoring Data – Hiwassee River Watershed (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-1 of C-51

APPENDIX C

Load Duration Curve Development and Determination of Required Load Reductions

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL

Page C-2 of C-51

A flow duration curve is a cumulative frequency graph, constructed from historic flow data at a particular location, that represents the percentage of time a particular flow rate is equaled or exceeded. When a water quality target (or criterion) concentration is applied to the flow duration curve, the resulting load duration curve (LDC) represents the allowable pollutant loading in a waterbody over the entire range of flow. Pollutant monitoring data, plotted on the LDC, provides a visual depiction of stream water quality as well as the frequency and magnitude of any exceedances. Load duration curve intervals can be grouped into several broad categories or zones, in order to provide additional insight about conditions and patterns associated with the impairment. For example, the duration curve could be divided into five zones: high flows (exceeded 0-10% of the time), moist conditions (10-40%), median or mid-range flows (40-60%), dry conditions (60-90%), and low flows (90-100%). Impairments observed in the low flow zone typically indicate the influence of point sources, while those further left on the LDC (representing zones of higher flow) generally reflect potential nonpoint source contributions (Stiles, 2003).

C.1 Development of Flow Duration Curves

Flow duration curves are developed for a waterbody from daily discharges of flow over a period of record. In general, there is a higher level of confidence that curves derived from data over a long period of record correctly represent the entire range of flow. The preferred method of flow duration curve computation uses daily mean data from USGS continuous-record stations located on the waterbody of interest. For ungaged streams, alternative methods must be used to estimate daily mean flow. These include: 1) regression equations (using drainage area as the independent variable) developed from continuous record stations in the same ecoregion; 2) drainage area extrapolation of data from a nearby continuous-record station of similar size and topography; and 3) calculation of daily mean flow using a dynamic computer model, such as the Loading Simulation Program C++ (LSPC).

Flow duration curves for impaired waterbodies in the Hiwassee River Watershed were derived from LSPC hydrologic simulations based on parameters derived from calibration at USGS Station No. 03565500, located on Oostanaula Creek near Sanford, located at mile 5.7 on Oostanaula Creek (see Appendix D for details of calibration). The data used, in each case, included the period of record from 7/1/94 – 6/30/04. For example, a flow-duration curve for North Mouse Creek at RM 4.2 was constructed using simulated daily mean flow for the period from 7/1/94 through 6/30/04 (RM 4.2 corresponds to the location of monitoring station NMOUS004.2MM). This flow duration curve is shown in Figure C-13 and represents the cumulative distribution of daily discharges arranged to show percentage of time specific flows were exceeded during the period of record (the highest daily mean flow during this period is exceeded 0% of the time and the lowest daily mean flow is equaled or exceeded 100% of the time). Flow duration curves for other impaired waterbodies were derived using a similar procedure and are shown in Figures C-1 thru C-16. Flow duration curves were not developed for the Hiwassee River mainstem impaired waterbody due to unsuitable conditions for modeling.

C.2 Development of Load Duration Curves and Determination of Required Load Reductions

E. coli and fecal coliform load duration curves for impaired waterbodies in the Hiwassee River Watershed were developed from the flow duration curves developed in Section C.1 and available water quality monitoring data. Load duration curves were developed using the following procedure (North Mouse Creek is shown as an example):

 A target load duration curve was generated for North Mouse Creek by applying the fecal coliform target concentration of 900 cts./100 mL (1,000 cts./100mL - MOS) to each of the ranked flows used to generate the flow duration curve (ref.: Section C.1) and plotting the results. The fecal coliform target maximum load corresponding to each ranked daily mean flow is: (Target Load)_{North Mouse Creek} = (900 cts./100 mL) x (Q) x (UCF)

where: Q = daily mean flow UCF = the required unit conversion factor

For E. coli, the target concentration of 847 cts./100 mL was applied to generate load duration curves corresponding to the E. coli water quality standard (see Section 5.0).

- 2. Daily loads were calculated for each of the water quality samples collected at monitoring station NMOUS004.2MM (ref.: Table B-1) by multiplying the sample concentration by the daily mean flow for the sampling date and the required unit conversion factor. NMOUS004.2MM was selected for LDC analysis because it was the monitoring station on North Mouse Creek with the most exceedances of the target concentration.
 - Note: In order to be consistent for all analyses, the derived daily mean flow was used to compute sampling data loads, even if measured ("instantaneous") flow data was available for some sampling dates.
- 3. Using the flow duration curves developed in C.1, the "percent of days the flow was exceeded" (PDFE) was determined for each sampling event. Each sample load was then plotted on the load duration curves developed in Step 1 according to the PDFE. The resulting fecal coliform and E. coli load duration curves for are shown in Figures C-45 and C-46.
- 4. For cases where the existing load exceeded the target maximum load at a particular PDFE, the reduction required to reduce the sample load to the target load was calculated.
- 5. The 90th percentile value for all of the fecal coliform sampling data at NMOUS004.2MM monitoring site was determined. If the 90th percentile value exceeded the target maximum fecal coliform concentration, the reduction required to reduce the 90th percentile value to the target maximum concentration was calculated.
- 6. Step 5 was repeated for E. coli data at NMOUS004.2MM.
- 7. For cases where five or more samples were collected over a period of not more than 30 consecutive days, the geometric mean fecal coliform concentration was determined and compared to the target geometric mean fecal coliform concentration of 180 cts/100 mL (200 cts/100mL MOS). If the sample geometric mean exceeded the target geometric mean concentration, the reduction required to reduce the sample geometric mean value to the target geometric mean concentration was calculated.
- 8. Step 7 was repeated for the E. coli data at NMOUS004.2MM.
- 9. The load reductions required to meet the target maximum and target 30-day geometric mean concentrations of both fecal coliform and E. coli were compared and the load reduction of the greatest magnitude selected as the TMDL for North Mouse Creek. The determination of required load reductions for North Mouse Creek is shown in Tables C-30 and C-31.

Load duration curves and required load reductions of other impaired waterbodies were derived in a similar manner and are shown in Figures C-17 through C-49 and Tables C-1 through C-34. For the Hiwassee River mainstem impaired waterbody, where flows were not simulated due to unsuitable conditions for modeling (ref.: Section 8.5), load duration curves could not be developed. However, required load reductions were derived according to step 5 and are shown in Tables C-35 through C-38.

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-4 of C-51

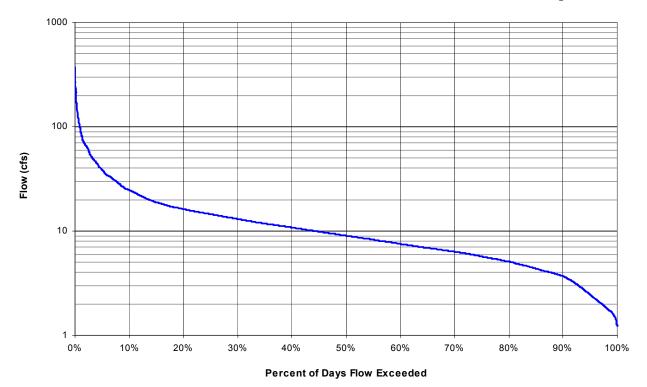


Figure C-1. Flow Duration Curve for Agency Creek at Mile 2.1

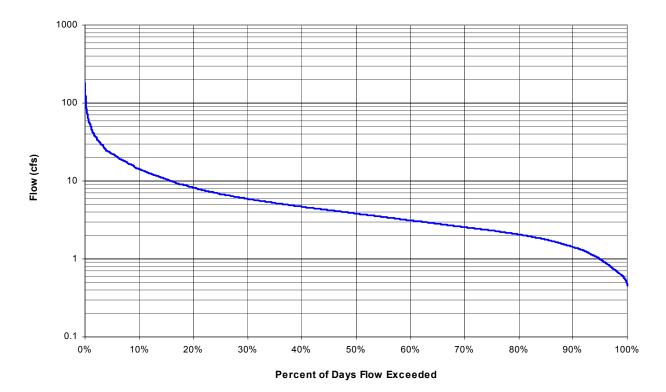


Figure C-2. Flow Duration Curve for Fillauer Branch at Mile 0.3

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-5 of C-51

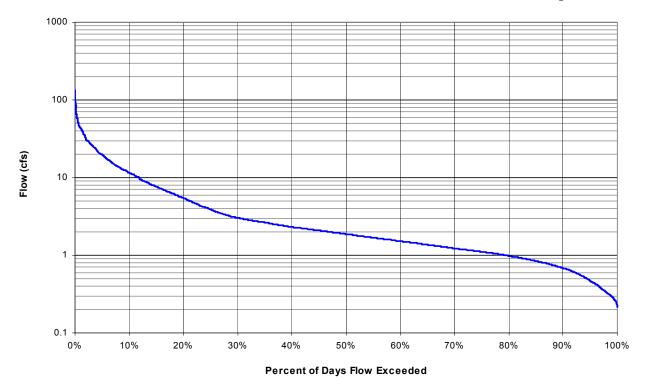


Figure C-3. Flow Duration Curve for Woolen Mill Branch at Mile 0.8

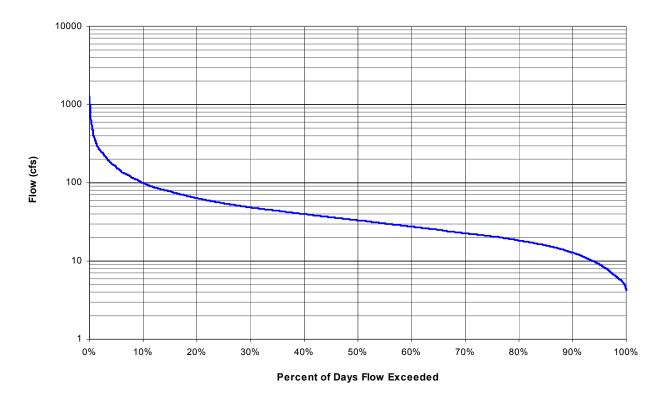


Figure C-4. Flow Duration Curve for South Mouse Creek at Mile 12.7

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-6 of C-51

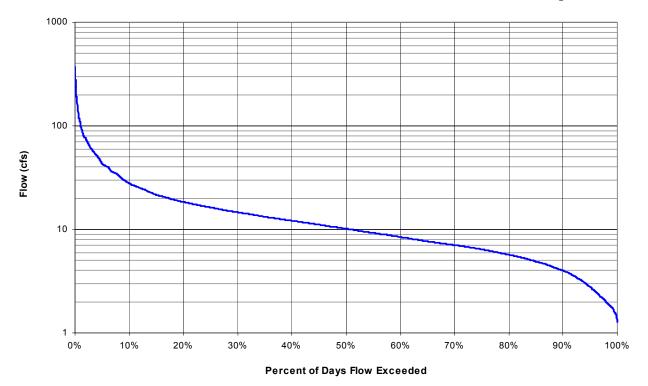


Figure C-5. Flow Duration Curve for Little Chatata Creek at Mile 0.3

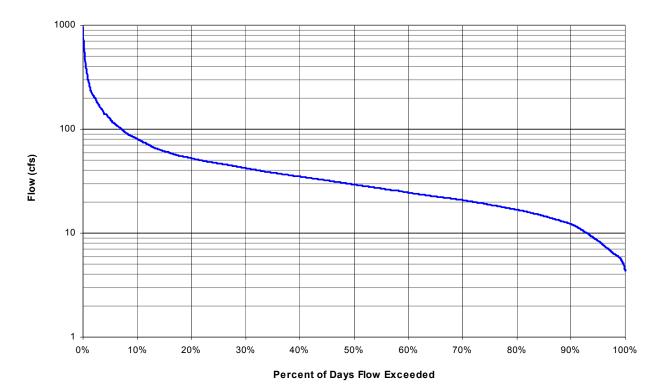


Figure D-6. Flow Duration Curve for Chatata Creek at Mile 0.5

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-7 of C-51

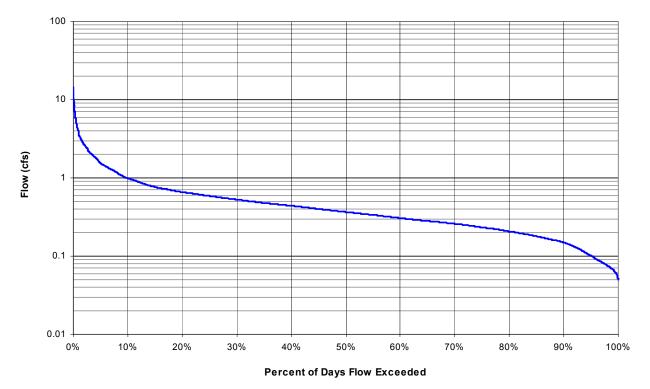


Figure C-7. Flow Duration Curve for Hawkins Branch at Mile 1.3

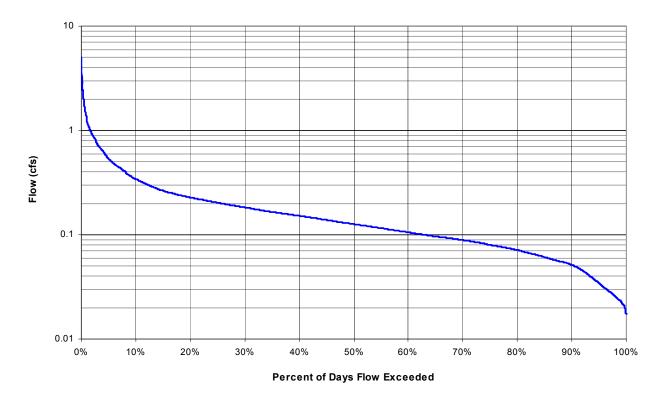


Figure C-8. Flow Duration Curve for Dairy Branch at Mile 1.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-8 of C-51

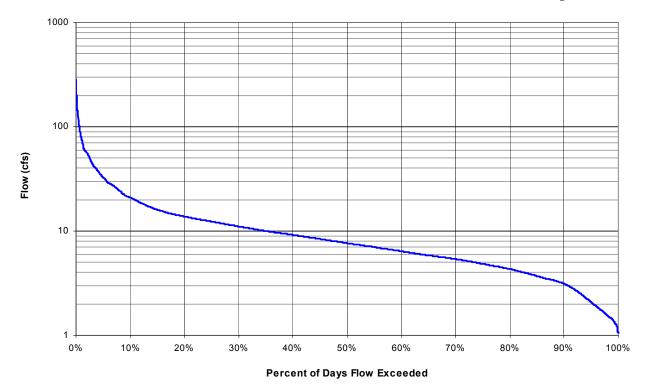


Figure C-9. Flow Duration Curve for Little Chestuee Creek at Mile 1.6

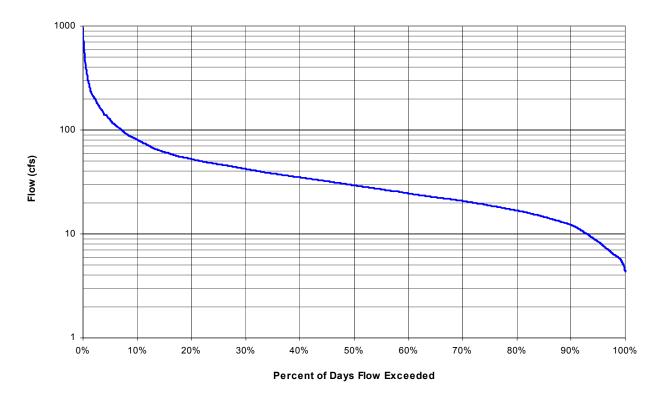


Figure C-10. Flow Duration Curve for Chestuee Creek at Mile 45.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-9 of C-51

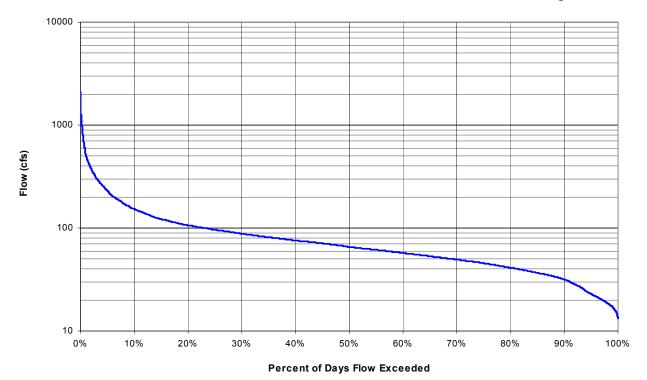


Figure C-11. Flow Duration Curve for Oostanaula Creek at Mile 5.7

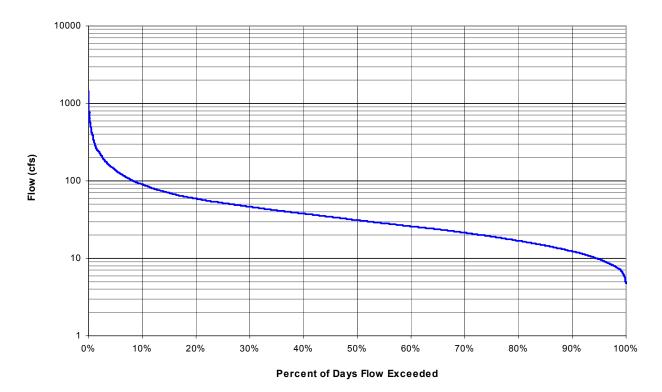


Figure C-12. Flow Duration Curve for Oostanaula Creek at Mile 28.4

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-10 of C-51

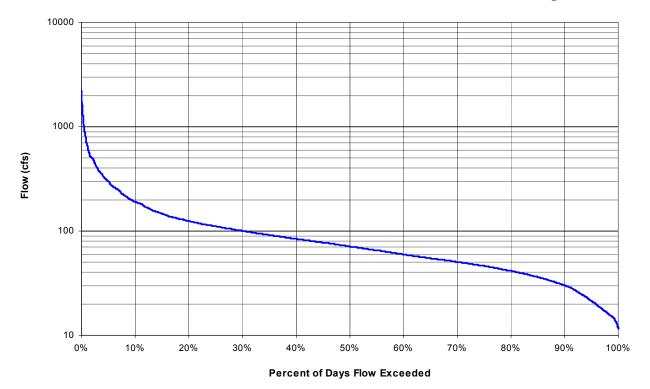


Figure C-13. Flow Duration Curve for North Mouse Creek at Mile 4.2

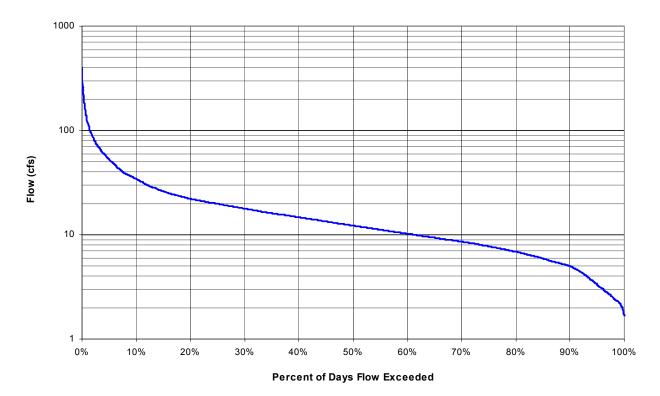


Figure C-14. Flow Duration Curve for Spring Creek at Mile 15.6

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-11 of C-51

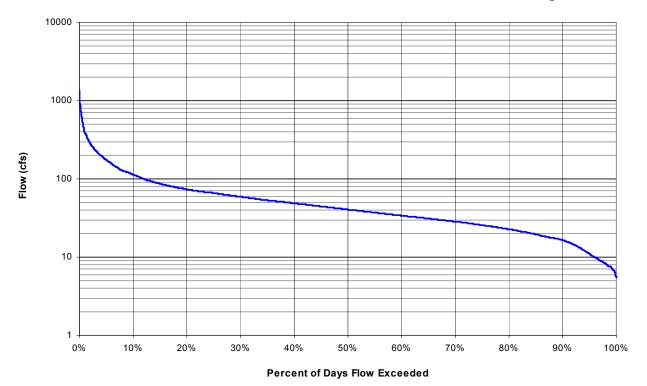


Figure C-15. Flow Duration Curve for Rogers Creek at Mile 14.2

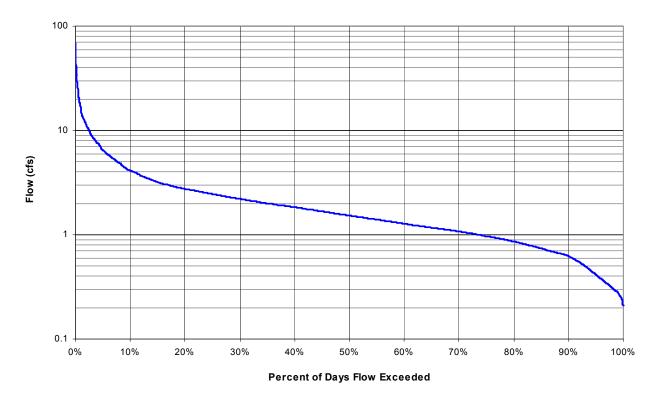


Figure C-16. Flow Duration Curve for Price Creek at Mile 4.4

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-12 of C-51

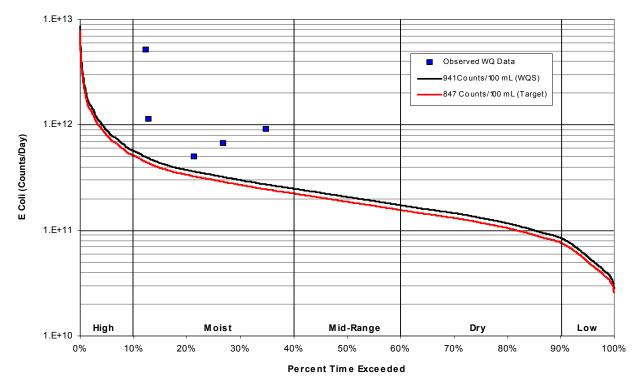


Figure C-17. E. Coli Load Duration Curve for Agency Creek at Mile 2.1

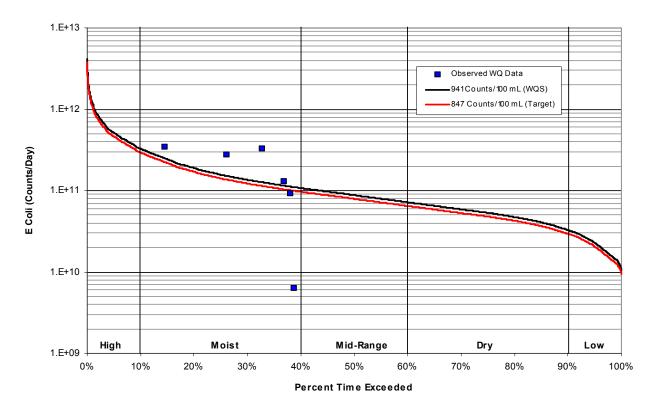


Figure C-18. E. Coli Load Duration Curve for Fillauer Branch at Mile 0.3

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-13 of C-51

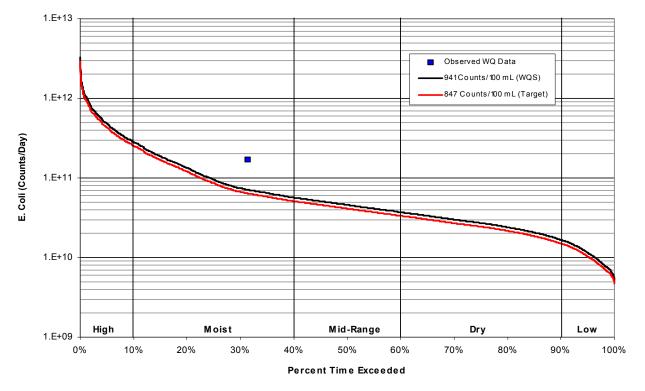


Figure C-19. E. Coli Load Duration Curve for Woolen Mill Branch at Mile 0.8

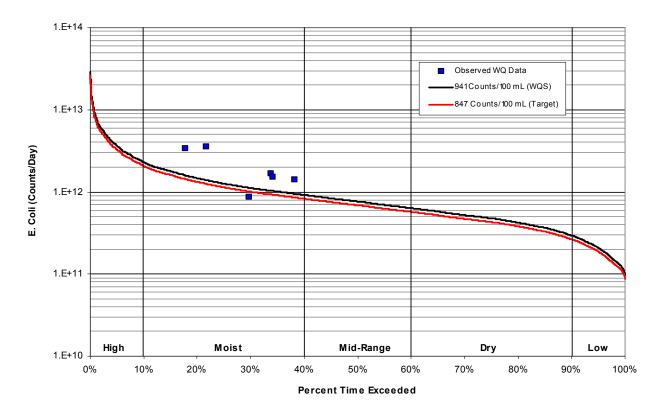


Figure C-20. E. Coli Load Duration Curve for South Mouse Creek at Mile 12.7

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-14 of C-51

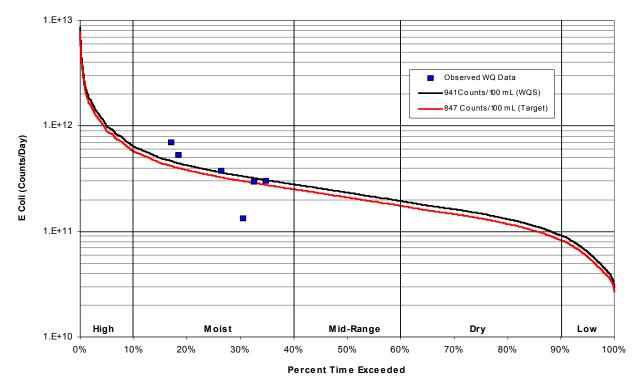


Figure C-21. E. Coli Load Duration Curve for Little Chatata Creek at Mile 0.3

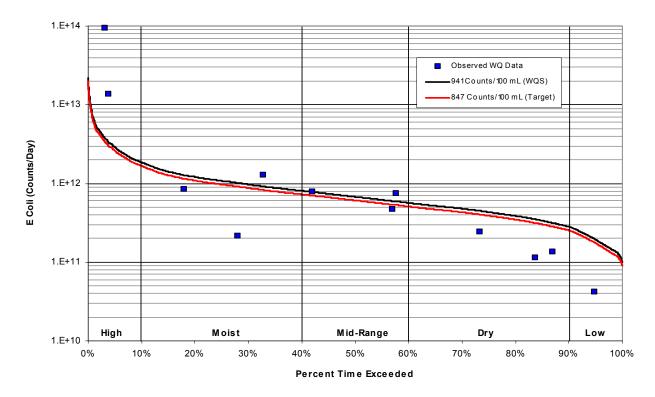


Figure C-22. E. Coli Load Duration Curve for Chatata Creek at Mile 0.5

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-15 of C-51

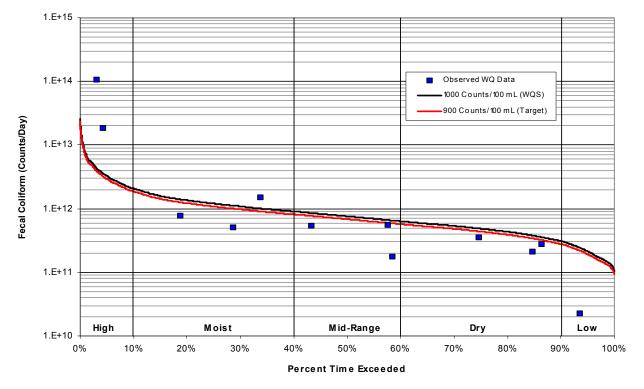


Figure C-23. Fecal Coliform Load Duration Curve for Chatata Creek at Mile 0.5

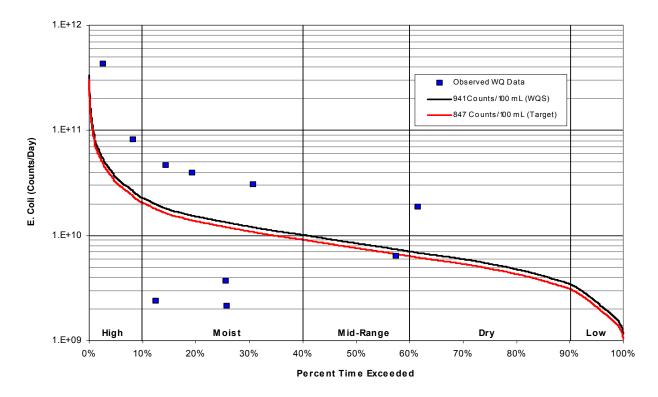


Figure C-24. E. Coli Load Duration Curve for Hawkins Branch at Mile 1.3

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-16 of C-51

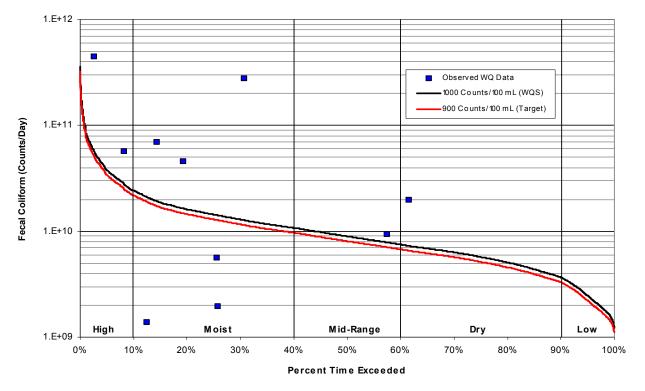


Figure C-25. Fecal Coliform Load Duration Curve for Hawkins Branch at Mile 1.3

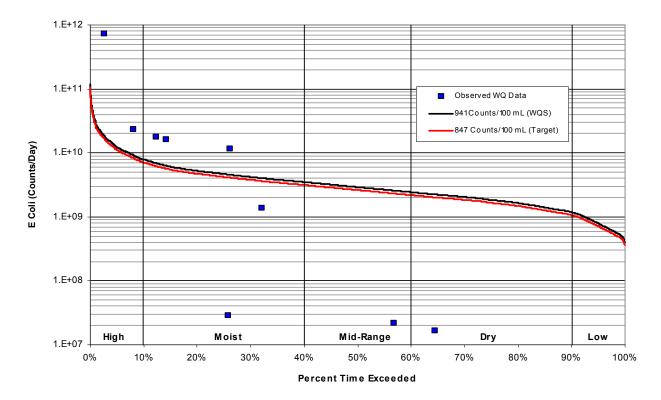


Figure C-26. E. Coli Load Duration Curve for Dairy Branch at Mile 1.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-17 of C-51

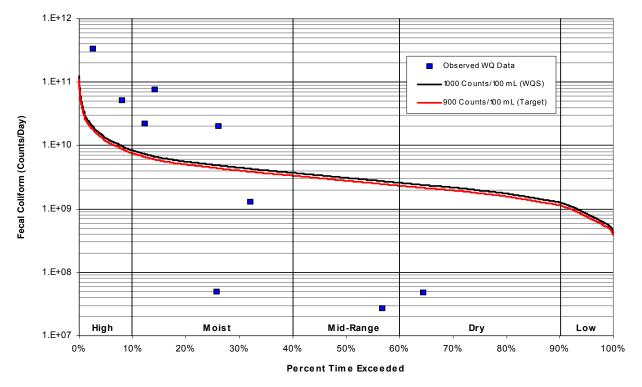


Figure C-27. Fecal Coliform Load Duration Curve for Dairy Branch at Mile 1.2

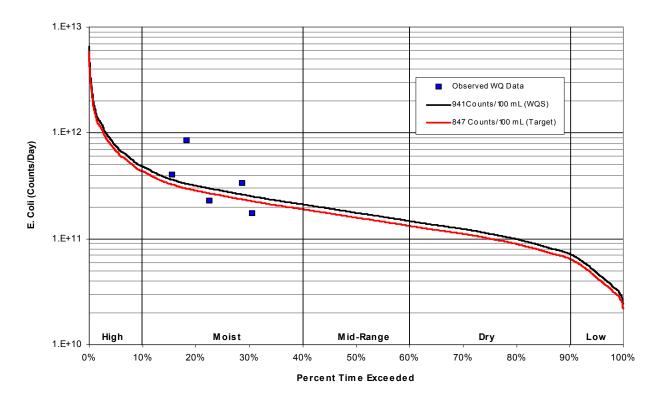


Figure C-28. E. Coli Load Duration Curve for Little Chestuee Creek at Mile 1.6

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-18 of C-51

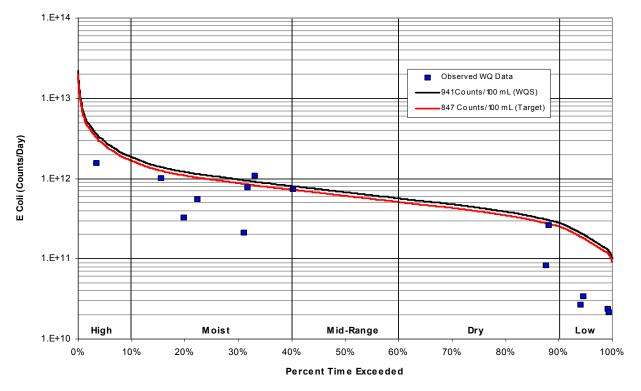


Figure C-29. E. Coli Load Duration Curve for Chestuee Creek at Mile 45.2

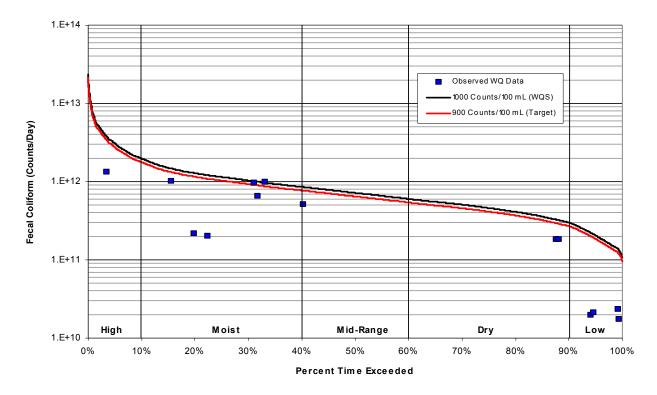


Figure C-30. Fecal Coliform Load Duration Curve for Chestuee Creek at Mile 45.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-19 of C-51

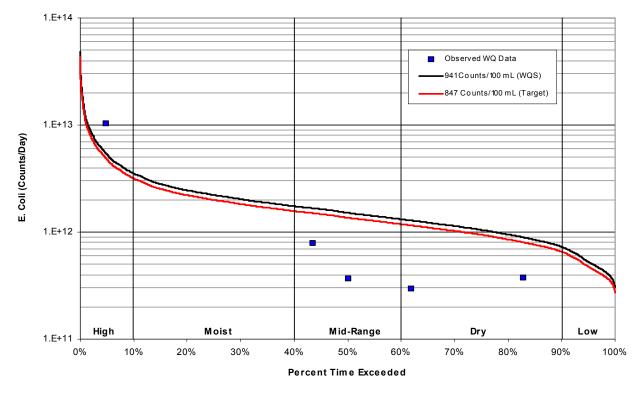


Figure C-31. E. Coli Load Duration Curve for Oostanaula Creek at Mile 5.7

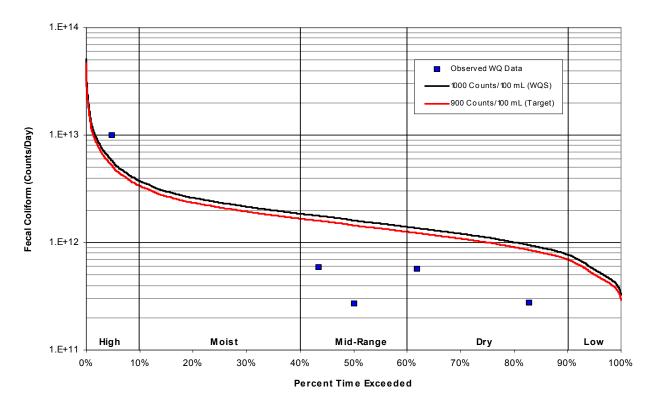


Figure C-32. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 5.7

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-20 of C-51

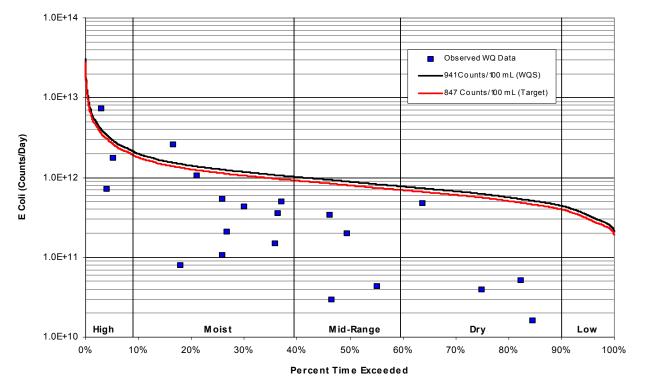


Figure C-33. E. Coli Load Duration Curve for Oostanaula Creek at Mile 26.6

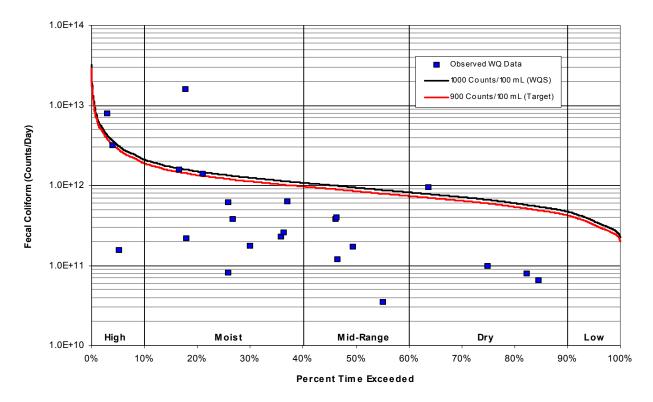


Figure C-34. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 26.6

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-21 of C-51

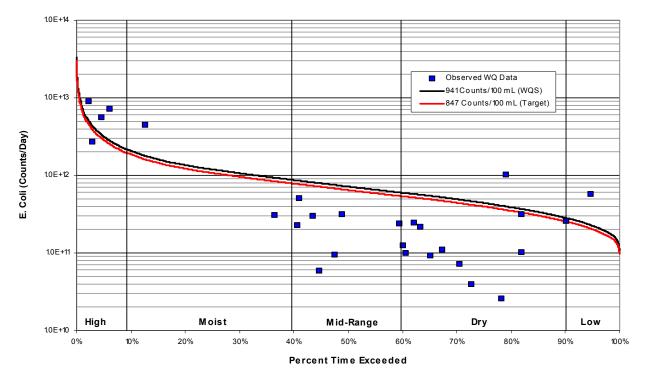


Figure C-35. E. Coli Load Duration Curve for Oostanaula Creek at Mile 28.4

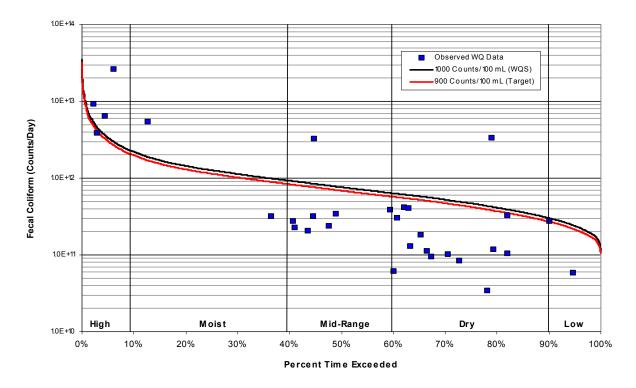


Figure C-36. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 28.4

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-22 of C-51

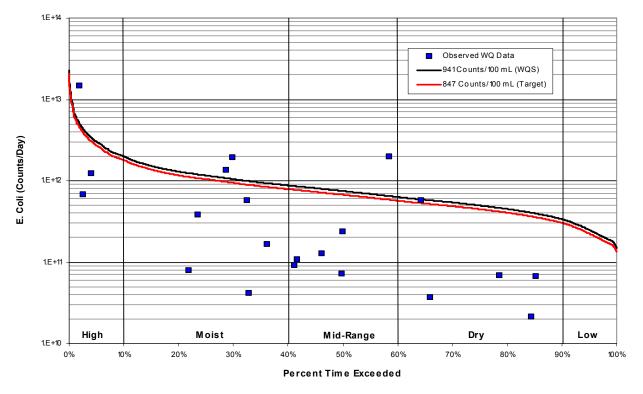


Figure C-37. E. Coli Load Duration Curve for Oostanaula Creek at Mile 30.0

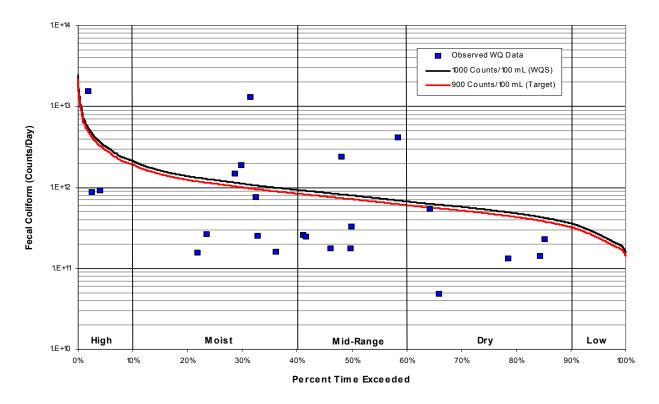


Figure C-38. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 30.0

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-23 of C-51

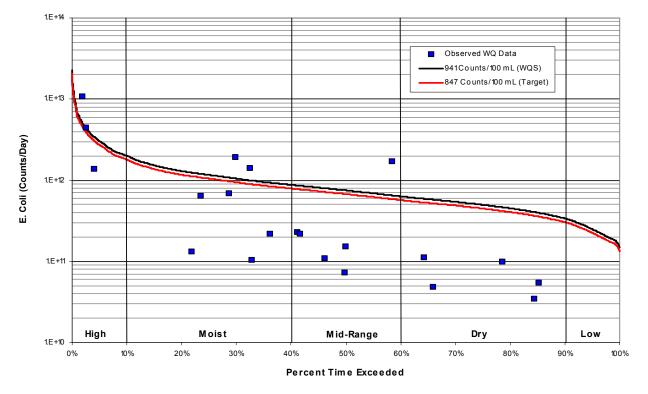


Figure C-39. E. Coli Load Duration Curve for Oostanaula Creek at Mile 30.1

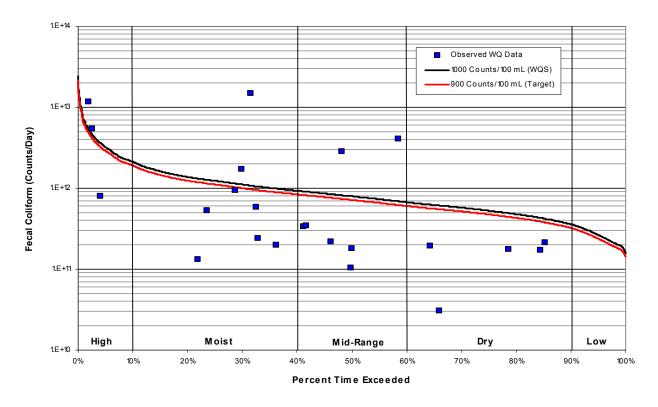


Figure C-40. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 30.1

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-24 of C-51

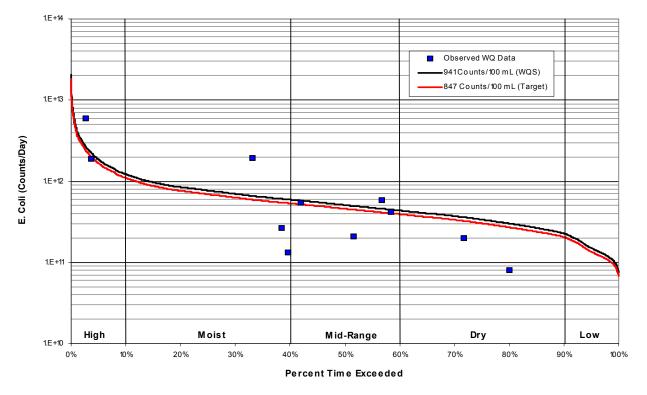


Figure C-41. E. Coli Load Duration Curve for Oostanaula Creek at Mile 33.6

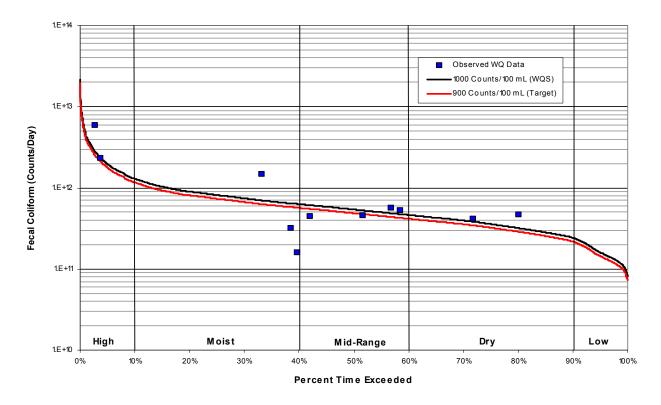


Figure C-42. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 33.6

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-25 of C-51

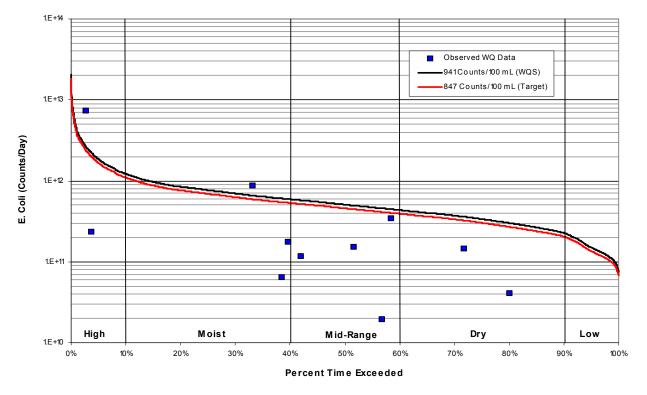


Figure C-43. E. Coli Load Duration Curve for Oostanaula Creek at Mile 35.1

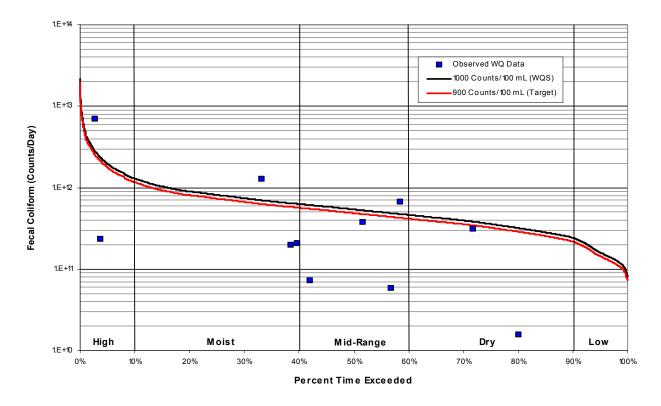


Figure C-44. Fecal Coliform Load Duration Curve for Oostanaula Creek at Mile 35.1

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-26 of C-51

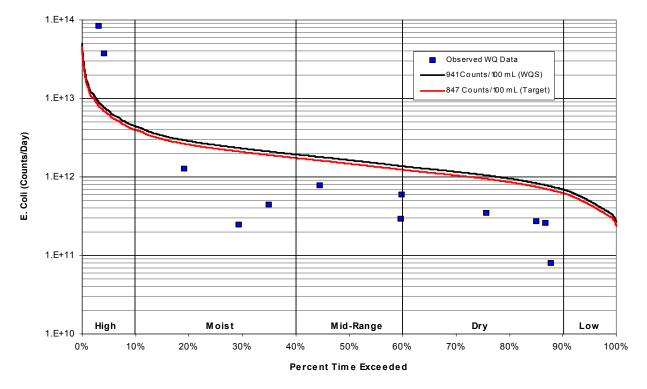


Figure C-45. E. Coli Load Duration Curve for North Mouse Creek at Mile 4.2

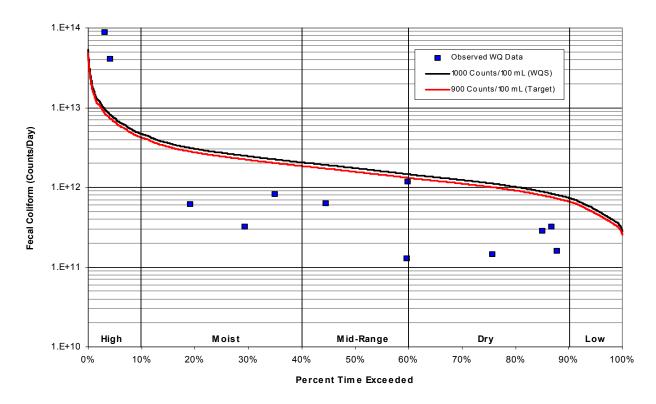


Figure C-46. Fecal Coliform Load Duration Curve for North Mouse Creek at Mile 4.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-27 of C-51

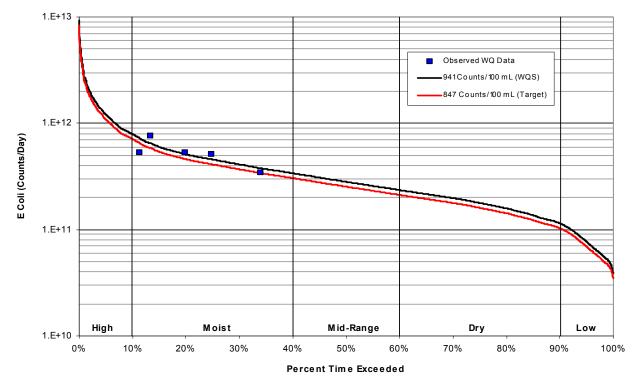


Figure C-47. E. Coli Load Duration Curve for Spring Creek at Mile 15.6

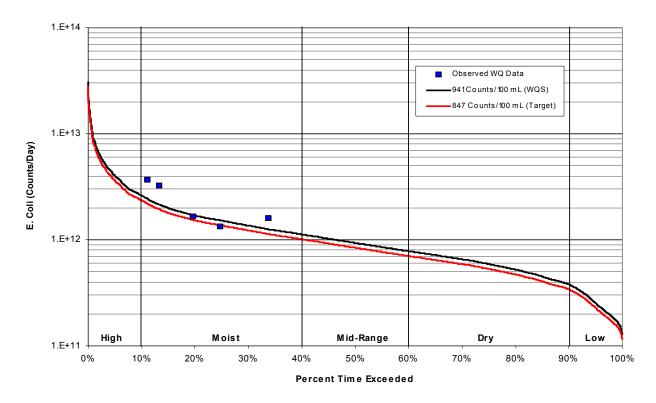


Figure C-48. E. Coli Load Duration Curve for Rogers Creek at Mile 14.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-28 of C-51

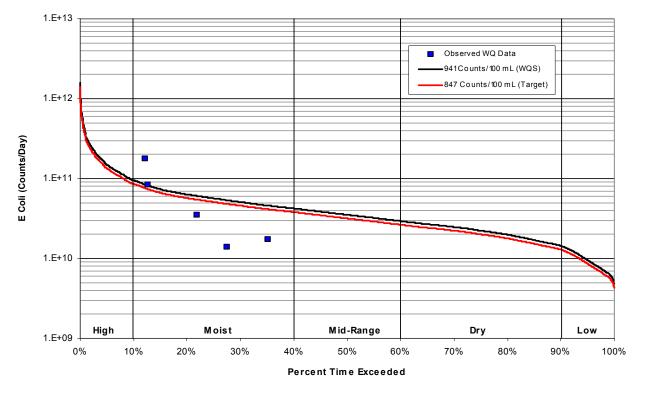


Figure C-49. E. Coli Load Duration Curve for Price Creek at Mile 4.4

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-29 of C-51

			E. Coli				
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction	
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]	
12.24%	21.6	7/9/2003	9800	91.4			
12.76%	21	7/10/2003	2240	62.2			
21.38%	15.7	6/10/2003	1299	34.8			
26.72%	14	6/23/2003	1986	57.4			
34.82%	11.8	6/25/2003	3190	73.4	2827	96.0	
	90 th Percentile (all)		7156	88.2			

Table C-1. Required Load Reduction for Agency Creek at Mile 2.1 – E. Coli Analysis

Table C-2. Required Load Reduction for Fillauer Branch at Mile 0.3 – E. Coli Analysis

			E. Coli			
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
14.43%	10.8708	6/11/2003	1299	34.8		
26.09%	6.60191	6/9/2003	1732	51.1		
32.71%	5.51426	5/28/2003	>2419	>65.0		
36.74%	5.00405	6/23/2003	1080	21.6		
38.05%	4.87425	6/5/2003	770	NR		
38.74%	4.80342	6/2/2003	54.6	NR	>792	>85.7
	90 th Percentile (all)		2076	>59.2		

Table C-3. Required Load Reduction for Woolen Mill Branch at Mile 0.8 – E. Coli Analysis

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
31.399%	2.90026	3/3/04	>2419	>65.0
	90 th Pe	rcentile	NA	

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL

Page C-30 of C-51

Table C-4. Required Load Reduction for South Mouse Creek at Mile 12.7 – E. Coli Analysis

			E. Coli			
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
17.66%	70.0191	6/11/2003	1986	57.4		
21.60%	60.568	6/9/2003	>2419	>65.0		
29.67%	48.8541	5/28/2003	727			
33.75%	45.0305	6/23/2003	1520	44.3		
34.03%	44.7699	6/5/2003	1413	40.1		
38.13%	41.236	6/2/2003	1413	40.1	>1482	>92.4
	90 th Perce	entile (all)	>2203	>61.5		

Table C-5. Required Load Reduction for Little Chatata Creek at Mile 0.3 – E. Coli Analysis

			E. Coli				
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction	
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]	
17.00%	20.2991	6/11/2003	1413	40.1			
18.34%	19.3147	6/9/2003	1119	24.3			
26.34%	15.7877	5/28/2003	980	13.6			
30.50%	14.469	6/23/2003	378	NR			
32.52%	13.9591	6/5/2003	866	NR			
34.74%	13.3282	6/2/2003	920	NR	881	87.2	
	90 th Percentile (all)		1266	33.1			

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL Page C-31 of C-51

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
3.12%	173.757	11/12/2002	23590	96.4
4.22%	147.161	5/19/2003	4000	78.8
18.70%	57.0607	3/24/2003	630	NR
28.69%	45.6767	12/18/2002	200	NR
33.75%	41.1418	4/29/2003	1320	35.8
43.25%	34.9013	1/13/2004	960	11.8
57.51%	27.095	8/19/2003	1210	30.0
58.50%	26.6846	1/28/2003	740	NR
74.62%	19.9954	5/11/2004	520	NR
84.62%	15.5471	11/4/2003	310	NR
86.45%	14.5339	10/21/2002	410	NR
93.54%	9.95873	8/27/2002	200	NR
	90 th Perce	entile (all)	3732	77.3

Table C-6. Required Load Reduction for Chatata Creek at Mile 0.5 – E. Coli Analysis

Table C-7. Required Load Reduction for Chatata Creek at Mile 0.5 – Fecal Coliform Analysis

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
3.12%	173.757	11/12/2002	25000	96.4
4.22%	147.161	5/19/2003	5200	82.7
18.70%	57.0607	3/24/2003	560	NR
28.69%	45.6767	12/18/2002	460	NR
33.75%	41.1418	4/29/2003	1500	40.0
43.25%	34.9013	1/13/2004	640	NR
57.51%	27.095	8/19/2003	850	NR
58.50%	26.6846	1/28/2003	270	NR
74.62%	19.9954	5/11/2004	730	NR
84.62%	15.5471	11/4/2003	560	NR
86.45%	14.5339	10/21/2002	770	NR
93.54%	9.95873	8/27/2002	92	NR
	90 th Perce	entile (all)	4830	82.5

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL Page C-32 of C-51

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.60%	2.35495	2/24/2003	7540	88.8
8.13%	1.16161	11/20/2003	2920	71.0
12.43%	0.86617	2/11/2004	113	NR
14.34%	0.78699	5/14/2003	>2419	>65.0
19.30%	0.67145	12/30/2002	>2419	>65.0
25.51%	0.58102	6/4/2003	260	NR
25.73%	0.57939	3/17/2003	152	NR
30.61%	0.52254	7/21/2003	>2419	>65.0
57.35%	0.32174	10/7/2003	816	NR
61.48%	0.298	8/27/2003	2590	67.3
	90 th Perce	entile (all)	>3382	>75.0

Table C-8. Required Load Reduction for Hawkins Branch at Mile 1.3 – E. Coli Analysis

Table C-9. Required Load Reduction for Hawkins Branch at Mile 1.3 – Fecal Coliform Analysis

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.60%	2.35495	2/24/2003	7800	88.5
8.13%	1.16161	11/20/2003	2000	55.0
12.43%	0.86617	2/11/2004	66	NR
14.34%	0.78699	5/14/2003	3600	75.0
19.30%	0.67145	12/30/2002	2800	67.9
25.51%	0.58102	6/4/2003	400	NR
25.73%	0.57939	3/17/2003	138	NR
30.61%	0.52254	7/21/2003	22000	95.9
57.35%	0.32174	10/7/2003	1200	25.0
61.48%	0.298	8/27/2003	2700	66.7
	90 th Perce	entile (all)	9220	90.2

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL Page C-33 of C-51

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.60%	0.81414	2/24/2003	36540	97.7
8.08%	0.40091	11/20/2003	>2419	>65.0
12.29%	0.30002	2/11/2004	>2419	>65.0
14.21%	0.27309	5/14/2003	>2419	>65.0
25.65%	0.20028	3/17/2003	6	NR
26.01%	0.19891	6/4/2003	>2419	>65.0
31.97%	0.17513	7/21/2003	328	NR
56.78%	0.11195	10/7/2003	8	NR
64.44%	0.09738	8/27/2003	7	NR
	90 th Perce	entile (all)	>9243	>90.8

Table C-10. Required Load Reduction for Dairy Branch at Mile 1.2 – E. Coli Analysis

Table C-11. Required Load Reduction for Dairy Branch at Mile 1.2 – Fecal Coliform Analysis

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.60%	0.81414	2/24/2003	17000	94.7
8.08%	0.40091	11/20/2003	5300	83.0
12.29%	0.30002	2/11/2004	3000	70.0
14.21%	0.27309	5/14/2003	11600	92.2
25.65%	0.20028	3/17/2003	10	NR
26.01%	0.19891	6/4/2003	4200	78.6
31.97%	0.17513	7/21/2003	300	NR
56.78%	0.11195	10/7/2003	10	NR
64.44%	0.09738	8/27/2003	20	NR
	90 th Perce	entile (all)	12680	92.9

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL

Page C-34 of C-51

Table C-12. Required Load Reduction for Little Chestuee Creek at Mile 2.1 – E. Coli Analysis

			E. Coli				
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction	
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]	
15.52%	15.7048	6/9/2003	1046	19.0			
18.26%	14.3745	6/11/2003	>2419	>65.0			
22.42%	13.0274	5/28/2003	727	NR			
28.63%	11.4005	6/5/2003	1203	29.6			
30.58%	10.9573	6/2/2003	648	NR	>1074.8	>89.5	
	90 th Percentile (all)		>1933	>56.2			

Table C-13. Required Load Reduction for Chestuee Creek at Mile 42.5 (1998-1999) – E. Coli Analysis

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
3.42%	155.5	3/11/1998	411	NR
15.44%	60.5	4/15/1998	687	NR
19.68%	53.2	3/2/1998	249	NR
22.28%	49.4	2/23/1999	460	NR
30.99%	41.3	5/18/1999	210	NR
31.76%	40.8	4/13/1998	770	NR
33.07%	39.6	4/14/1998	1120	24.4
40.27%	34.9	5/17/1999	870	NR
87.57%	13.4	8/16/1999	250	NR
88.07%	13.1	8/17/1999	820	NR
94.01%	9.1	11/15/1999	120	NR
94.58%	8.7	11/17/1999	160	NR
99.12%	5.7	11/30/1998	172	NR
99.23%	5.6	12/1/1998	157	NR
	90 th Perce	entile (all)	855	0.0

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-35 of C-51

Table C-14. Required Load Reduction for Chestuee Creek at Mile 42.5 (2003) – E. Coli Analysis

			E. Coli			
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
14.95%	61.3916	6/9/2003	1986	57.4		
19.05%	53.8887	6/11/2003	816	NR		
22.23%	49.4649	5/28/2003	547	NR		
28.83%	43.426	6/5/2003	1553	45.5		
30.80%	41.45	6/2/2003	517	NR	934	87.9
	90 th Perce	entile (all)	1813	53.3		

Table C-15. Required Load Reduction for Chestuee Creek at Mile 42.5 – Fecal Coliform Analysis

			Fecal Coliform		
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	
[%]	[cfs]		[cts/100 ml]	[%]	
3.42%	155.529	3/11/1998	350	NR	
15.44%	60.5171	4/15/1998	690	NR	
19.68%	53.1557	3/2/1998	168	NR	
22.28%	49.3872	2/23/1999	170	NR	
30.99%	41.2541	5/18/1999	970	NR	
31.76%	40.8243	4/13/1998	660	NR	
33.07%	39.5972	4/14/1998	1030	12.6	
40.27%	34.9085	5/17/1999	600	NR	
87.57%	13.4245	8/16/1999	560	NR	
88.07%	13.1375	8/17/1999	570	NR	
94.01%	9.11817	11/15/1999	90	NR	
94.58%	8.74417	11/17/1999	100	NR	
99.12%	5.66696	11/30/1998	172	NR	
99.23%	5.55664	12/1/1998	130	NR	
	90 th Perce	entile (all)	886	0.0	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-36 of C-51

		0
Table C-16	 Required Load Reduction for Oostanaula Creek at Mile 5.7 – E. C 	Coli Analysis

			E. Coli	
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
4.74%	237.598	2/9/2003	1986	57.4
43.39%	72.639	8/20/2003	461	NR
50.07%	65.525	1/14/2004	239	NR
61.79%	55.823	11/5/2003	219	NR
82.81%	38.783	10/22/2002	411	NR
	90 th Percentile (all)		1376	38.4

Table C-17.	Required Load Reduction for Oostanaula Creek at Mile	e 5.7 – Fecal Coliform
	Analysis	

			Fecal Coliform	
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
4.74%	237.598	2/9/2003	1900	52.6
43.39%	72.639	8/20/2003	340	NR
50.07%	65.525	1/14/2004	176	NR
61.79%	55.823	11/5/2003	420	NR
82.81%	38.783	10/22/2002	300	NR
	90 th Percentile (all)		1308	31.2

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-37 of C-51

		-
Table C 40	. Required Load Reduction for Oostanaula Creek at Mile 26.6 – E.	Cali Analyzala
1 able C-18.	Required Load Reduction for Uostanaula Greek at Mile $25.5 - E_{\odot}$	

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.85%	177.204	1/26/2004	1690	49.9
4.02%	147.471	2/9/2004	200	NR
5.15%	127.382	2/25/2003	560	NR
16.56%	66.7518	6/17/2003	1600	47.1
17.90%	64.6496	9/3/2003	50	NR
21.05%	59.6118	6/3/2003	720	NR
25.76%	54.8426	3/25/2003	80	NR
25.81%	54.8113	11/18/2003	400	NR
26.75%	53.7173	12/17/2002	160	NR
29.95%	51.0811	11/19/2002	350	NR
35.78%	46.664	4/29/2003	130	NR
36.33%	46.2359	3/15/2004	320	NR
37.01%	45.7707	7/30/2003	450	NR
46.07%	40.8052	12/9/2003	340	NR
46.51%	40.4335	1/21/2003	30	NR
49.36%	38.8447	4/26/2004	210	NR
55.16%	35.7121	10/1/2003	50	NR
63.70%	31.9908	10/29/2002	610	NR
74.82%	27.1331	5/24/2004	60	NR
82.32%	23.3038	6/14/2004	90	NR
84.45%	22.1901	10/1/2002	30	NR
	90 th Perce	entile (all)	720	0.0

			Fecal C	oliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.85%	177.204	1/26/2004	1850	51.4
4.02%	147.471	2/9/2004	880	NR
5.15%	127.382	2/25/2003	50	NR
16.56%	66.7518	6/17/2003	960	NR
17.68%	64.8794	3/26/2002	10000	91.0
17.90%	64.6496	9/3/2003	140	NR
21.05%	59.6118	6/3/2003	960	NR
25.76%	54.8426	3/25/2003	60	NR
25.81%	54.8113	11/18/2003	460	NR
26.75%	53.7173	12/17/2002	290	NR
29.95%	51.0811	11/19/2002	140	NR
35.78%	46.664	4/29/2003	200	NR
36.33%	46.2359	3/15/2004	230	NR
37.01%	45.7707	7/30/2003	560	NR
46.07%	40.8052	12/9/2003	380	NR
46.35%	40.5731	5/22/2002	400	NR
46.51%	40.4335	1/21/2003	120	NR
49.36%	38.8447	4/26/2004	180	NR
55.16%	35.7121	10/1/2003	40	NR
63.70%	31.9908	10/29/2002	1210	25.6
74.82%	27.1331	5/24/2004	150	NR
82.32%	23.3038	6/14/2004	140	NR
84.45%	22.1901	10/1/2002	120	NR
	90 th Perce	entile (all)	1160	22.4

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-38 of C-51 Table C-19. Required Load Reduction for Oostanaula Creek at Mile 26.6 – Fecal Coliform Analysis

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-39 of C-51

			E. (Coli
PDFE	Flow	Sample	Sample	Required
TDIE	11000	Date	Conc.	Load
50/1		Date		Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.17%	221.52	1/26/2004	1650	48.7
2.89%	187.21	2/9/2004	600	NR
4.47%	147.88	2/19/2003	1553	45.5
6.07%	122.7	3/13/2001	2400	64.7
12.59%	77.25	3/9/1999	2400	64.7
36.35%	40.56	12/9/2003	310	NR
38.32%	39.09	3/25/2002	1	NR
40.57%	37.43	3/15/2004	250	NR
40.97%	37.13	7/30/2003	560	NR
43.45%	35.41	1/14/2004	345	NR
44.55%	34.61	10/1/2003	70	NR
47.55%	32.73	9/3/2003	120	NR
48.84%	31.76	8/20/2003	411	NR
59.32%	26.24	3/7/2000	370	NR
59.99%	25.88	6/8/1999	200	NR
60.64%	25.65	4/26/2004	160	NR
62.03%	25.04	11/18/2003	400	NR
63.22%	24.49	11/5/2003	365	NR
65.18%	23.65	12/11/2000	160	NR
67.26%	22.72	9/11/2001	200	NR
70.55%	21.11	6/12/2000	140	NR
72.62%	20.17	5/24/2004	80	NR
78.15%	17.66	6/14/2004	60	NR
78.98%	17.31	12/15/1998	>2419	>65.0
81.93%	15.96	10/22/2002	260	NR
81.96%	15.95	12/7/1999	820	NR
90.05%	12.29	9/19/2000	870	NR
94.69%	9.9	9/13/1999	2400	64.7
	90 th Perce	entile (all)	>2400	>64.7

Fecal Colifor	
	quired
	oad Juction
	[%]
2.17% 221.52 1/26/2004 1720	<u>47.7</u>
	NR
2.89% 187.21 2/9/2004 850 4.47% 147.88 2/19/2003 1800	
	50.0
	89.7
<u>12.59%</u> 77.25 <u>3/9/1999</u> 2900	<u>69.0</u>
<u>36.35%</u> 40.56 12/9/2003 320	NR
<u>38.32%</u> <u>39.09</u> <u>3/25/2002</u> <u>10</u>	NR
<u>40.57%</u> <u>37.43</u> <u>3/15/2004</u> <u>300</u>	NR
40.97% 37.13 7/30/2003 250	NR
43.45% 35.41 1/14/2004 220	NR
44.55% 34.61 10/1/2003 380	NR
<u>44.75% 34.48 5/24/1999</u> 3900	76.9
47.55% 32.73 9/3/2003 300	NR
48.84% 31.76 8/20/2003 440	NR
<u>59.32%</u> <u>26.24</u> <u>3/7/2000</u> <u>600</u>	NR
59.99% 25.88 6/8/1999 97	NR
60.64% 25.65 4/26/2004 480	NR
62.03% 25.04 11/18/2003 690	NR
62.84% 24.65 7/19/1999 670	NR
63.22% 24.49 11/5/2003 220	NR
65.18% 23.65 12/11/2000 320	NR
66.46% 23.09 6/14/1999 200	NR
67.26% 22.72 9/11/2001 170	NR
70.55% 21.11 6/12/2000 200	NR
72.62% 20.17 5/24/2004 170	NR
78.15% 17.66 6/14/2004 80	NR
78.98% 17.31 12/15/1998 8000	88.8
79.21% 17.2 8/11/1999 280	NR
81.93% 15.96 10/22/2002 270	NR
81.96% 15.95 12/7/1999 830	NR
90.05% 12.29 9/19/2000 930	NR
94.69% 9.9 9/13/1999 240	NR
90 th Percentile (all) 2790	67.7

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-40 of C-51 Table C-21. Required Load Reduction for Oostanaula Creek at Mile 28.4 – Fecal Coliform Analysis

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
1.83%	221.52	1/26/2004	2760	69.3
2.55%	187.21	2/9/2004	150	NR
4.00%	148.57	2/25/2003	340	NR
21.74%	53.87	3/25/2003	60	NR
23.52%	51.88	12/17/2002	300	NR
28.69%	46.75	6/3/2003	1200	29.4
29.81%	45.72	6/17/2003	1740	51.3
32.38%	43.2	11/19/2002	550	NR
32.74%	43.04	4/29/2003	40	NR
36.05%	40.56	12/9/2003	170	NR
41.12%	37.43	3/15/2004	100	NR
41.58%	37.13	7/30/2003	120	NR
46.04%	34.61	10/1/2003	150	NR
49.82%	32.73	9/3/2003	90	NR
49.99%	32.61	1/21/2003	300	NR
58.42%	28.26	10/29/2002	2900	70.8
64.28%	25.65	4/26/2004	920	NR
65.89%	25.04	11/18/2003	60	NR
78.57%	20.17	5/24/2004	140	NR
84.29%	17.66	6/14/2004	50	NR
85.16%	17.22	10/1/2002	160	NR
	90 th Perce	entile (all)	1740	51.3

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-41 of C-51 Table C-22. Required Load Reduction for Oostanaula Creek at Mile 30.0 – E. Coli Analysis

			Fecal C	
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
1.83%	221.52	1/26/2004	2850	68.4
2.55%	187.21	2/9/2004	190	NR
4.00%	148.57	2/25/2003	250	NR
21.74%	53.87	3/25/2003	120	NR
23.52%	51.88	12/17/2002	210	NR
28.69%	46.75	6/3/2003	1300	30.8
29.81%	45.72	6/17/2003	1680	46.4
31.43%	44.07	3/26/2002	12000	92.5
32.38%	43.2	11/19/2002	710	NR
32.74%	43.04	4/29/2003	240	NR
36.05%	40.56	12/9/2003	160	NR
41.12%	37.43	3/15/2004	280	NR
41.58%	37.13	7/30/2003	270	NR
46.04%	34.61	10/1/2003	210	NR
48.10%	33.46	5/22/2002	2900	69.0
49.82%	32.73	9/3/2003	220	NR
49.99%	32.61	1/21/2003	410	NR
58.42%	28.26	10/29/2002	6000	85.0
64.28%	25.65	4/26/2004	870	NR
65.89%	25.04	11/18/2003	80	NR
78.57%	20.17	5/24/2004	270	NR
84.29%	17.66	6/14/2004	330	NR
85.16%	17.22	10/1/2002	550	NR
	90 th Perce	entile (all)	2890	68.9

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-42 of C-51 Table C-23. Required Load Reduction for Oostanaula Creek at Mile 30.0 – Fecal Coliform Analysis

Coli	E. (
Required Load Reduction	Sample Conc.	Sample Date	Flow	PDFE
[%]	[cts/100 ml]		[cfs]	[%]
57.4	1990	1/26/2004	221.52	1.83%
13.6	980	2/9/2004	187.21	2.55%
NR	380	2/25/2003	148.57	4.00%
NR	100	3/25/2003	53.87	21.74%
NR	510	12/17/2002	51.88	23.52%
NR	600	6/3/2003	46.75	28.69%
51.3	1740	6/17/2003	45.72	29.81%
37.3	1350	11/19/2002	43.2	32.38%
NR	100	4/29/2003	43.04	32.74%
NR	220	12/9/2003	40.56	36.05%
NR	250	3/15/2004	37.43	41.12%
NR	240	7/30/2003	37.13	41.58%
NR	130	10/1/2003	34.61	46.04%
NR	90	9/3/2003	32.73	49.82%
NR	190	1/21/2003	32.61	49.99%
66.1	2500	10/29/2002	28.26	58.42%
NR	180	4/26/2004	25.65	64.28%
NR	80	11/18/2003	25.04	65.89%
NR	200	5/24/2004	20.17	78.57%
NR	80	6/14/2004	17.66	84.29%
NR	130	10/1/2002	17.22	85.16%
51.3	1740	entile (all)	90 th Perce	

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-43 of C-51 Table C-24. Required Load Reduction for Oostanaula Creek at Mile 30.1 – E. Coli Analysis

			-	
Coliform	Fecal C			
Required Load Reduction	Sample Conc.	Sample Date	Flow	PDFE
[%]	[cts/100 ml]		[cfs]	[%]
59.1	2200	1/26/2004	221.52	1.83%
33.3	1200	2/9/2004	187.21	2.55%
NR	220	2/25/2003	148.57	4.00%
NR	100	3/25/2003	53.87	21.74%
NR	420	12/17/2002	51.88	23.52%
NR	840	6/3/2003	46.75	28.69%
42.3	1560	6/17/2003	45.72	29.81%
93.6	14000	3/26/2002	44.07	31.43%
NR	560	11/19/2002	43.2	32.38%
NR	230	4/29/2003	43.04	32.74%
NR	200	12/9/2003	40.56	36.05%
NR	370	3/15/2004	37.43	41.12%
NR	380	7/30/2003	37.13	41.58%
NR	260	10/1/2003	34.61	46.04%
74.3	3500	5/22/2002	33.46	48.10%
NR	130	9/3/2003	32.73	49.82%
NR	230	1/21/2003	32.61	49.99%
85.0	6000	10/29/2002	28.26	58.42%
NR	310	4/26/2004	25.65	64.28%
NR	50	11/18/2003	25.04	65.89%
NR	360	5/24/2004	20.17	78.57%
NR	400	6/14/2004	17.66	84.29%
NR	510	10/1/2002	17.22	85.16%
72.2	3240	entile (all)	90 th Perce	

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-44 of C-51 Table C-25. Required Load Reduction for Oostanaula Creek at Mile 30.1 – Fecal Coliform Analysis

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL

	E. Coli				
quired oad luction		Sample Conc.	Sample Date	Flow	PDFE
[%]]	[cts/100 ml]		[cfs]	[%]
59.5)	2090	1/26/2004	115.919	2.628%
NR)	800	2/9/2004	96.0258	3.723%
69.2)	2750	7/30/2003	28.471	33.151%
NR)	410	9/3/2003	26.2992	38.489%
NR)	210	3/15/2004	25.992	39.584%
NR)	890	12/9/2003	25.0027	41.911%
NR)	400	10/1/2003	21.5081	51.547%
29.4)	1200	11/18/2003	19.8617	56.721%
NR)	880	4/26/2004	19.3883	58.363%
NR)	520	5/24/2004	15.6601	71.640%
NR)	250	6/14/2004	13.0269	80.044%
59.5)	2090	entile (all)	90 th Perce	

Page C-45 of C-51 at Mile 33.6 – E. Coli Analysis Table C 26 . . - - - -. -41 -<u> </u>

Table C-27. Required Load Reduction for Oostanaula Creek at Mile 33.6 – Fecal Coliform Analysis

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.628%	115.919	1/26/2004	2120	57.5
3.723%	96.0258	2/9/2004	1000	NR
33.151%	28.471	7/30/2003	2140	57.9
38.489%	26.2992	9/3/2003	500	NR
39.584%	25.992	3/15/2004	250	NR
41.911%	25.0027	12/9/2003	740	NR
51.547%	21.5081	10/1/2003	870	NR
56.721%	19.8617	11/18/2003	1180	23.7
58.363%	19.3883	4/26/2004	1130	20.4
71.640%	15.6601	5/24/2004	1100	18.2
80.044%	13.0269	6/14/2004	1490	39.6
	90 th Perce	entile (all)	2120	57.5

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL

Page C-46 of C-51

Table C-28.	Required Loa	ad Reduction	for Oostanau	ila Creek at N	lile 35.1 – E. C
			E. (Coli	
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	
[%]	[cfs]		[cts/100 ml]	[%]	
2.628%	115.919	1/26/2004	2610	67.5	
3.723%	96.0258	2/9/2004	100	NR	
33.151%	28.471	7/30/2003	1250	32.2	
38.489%	26.2992	9/3/2003	100	NR	
39.584%	25.992	3/15/2004	280	NR	
41.911%	25.0027	12/9/2003	190	NR	
51.547%	21.5081	10/1/2003	290	NR	
56.721%	19.8617	11/18/2003	40	NR	
58.363%	19.3883	4/26/2004	720	NR	

5/24/2004

6/14/2004

Coli Analysis

Table C-29. Required Load Reduction for Oostanaula Creek at Mile 35.1 – Fecal Coliform Analysis

380

130

1250

NR

NR

32.2

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
2.628%	115.919	1/26/2004	2500	64.0
3.723%	96.0258	2/9/2004	100	NR
33.151%	28.471	7/30/2003	1850	51.4
38.489%	26.2992	9/3/2003	310	NR
39.584%	25.992	3/15/2004	330	NR
41.911%	25.0027	12/9/2003	120	NR
51.547%	21.5081	10/1/2003	720	NR
56.721%	19.8617	11/18/2003	120	NR
58.363%	19.3883	4/26/2004	1410	36.2
71.640%	15.6601	5/24/2004	810	NR
80.044%	13.0269	6/14/2004	50	NR
	90 th Perce	entile (all)	1850	51.4

71.640%

80.044%

15.6601

13.0269

90th Percentile (all)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-47 of C-51

Table C-30. Required Load Reduction for North Mouse Creek at Mile 4.2 – E. Coli An	alysis
--	--------

			E. (Coli
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
3.01%	399.445	11/12/2002	8620	90.2
4.02%	334.746	5/19/2003	4570	81.5
19.05%	127.615	3/24/2003	410	NR
29.35%	101.868	12/18/2002	100	NR
34.88%	91.9124	4/29/2003	200	NR
44.46%	78.0895	1/13/2004	410	NR
59.62%	60.1605	1/28/2003	200	NR
59.73%	60.0222	8/19/2003	410	NR
75.72%	45.641	5/11/2004	310	NR
85.08%	36.0408	11/4/2003	310	NR
86.67%	34.2459	10/21/2002	310	NR
87.76%	32.9522	8/27/2002	100	NR
	90 th Perce	entile (all)	4154	79.6

Table C-31.	Required Load Reduction for North Mouse Creek at Mile 4.2 – Fecal Coliform
	Analysis

			Fecal C	Coliform
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]
3.01%	399.445	11/12/2002	9000	90.0
4.02%	334.746	5/19/2003	5000	82.0
19.05%	127.615	3/24/2003	200	NR
29.35%	101.868	12/18/2002	130	NR
34.88%	91.9124	4/29/2003	370	NR
44.46%	78.0895	1/13/2004	330	NR
59.62%	60.1605	1/28/2003	88	NR
59.73%	60.0222	8/19/2003	800	NR
75.72%	45.641	5/11/2004	130	NR
85.08%	36.0408	11/4/2003	320	NR
86.67%	34.2459	10/21/2002	380	NR
87.76%	32.9522	8/27/2002	200	NR
	90 th Perce	entile (all)	4580	80.3

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-48 of C-51

	90 th Perce	entile (all)	1090	22.3		
33.95%	16.3868	6/25/2003	866	NR	926	87.8
24.75%	19.9739	6/23/2003	1046	19.0		
19.68%	22.3502	6/10/2003	980	13.6		
13.30%	28.2467	7/10/2003	1119	24.3		
11.17%	31.9232	7/9/2003	686	NR		
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
PDFE	Flow	Sample Date	Sample Conc.	E. (Required Load Reduction	Geometric Mean	Required Load Reduction
			E. Coli			

Table C-32. Required Load Reduction for Spring Creek at Mile 15.6 – E. Coli Analysis

Table C-33. Required Load Reduction for Rogers Creek at Mile 14.2 – E. Coli Analysis

			E. Coli			
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
11.09%	106.415	7/9/2003	1413	40.1		
13.28%	93.6615	7/10/2003	1413	40.1		
19.57%	74.3695	6/10/2003	920	NR		
24.67%	66.5143	6/23/2003	816	NR		
33.75%	54.4824	6/25/2003	1203	29.6	1125	90.0
	90 th Perce	entile (all)	1413	40.1		

Table C-34. Required Load Reduction for Price Creek at Mile 4.4 – E. Coli Analysis

				E. (Coli	
PDFE	Flow	Sample Date	Sample Conc.	Required Load Reduction	Geometric Mean	Required Load Reduction
[%]	[cfs]		[cts/100 ml]	[%]	[cts/day]	[%]
12.02%	3.67979	7/10/2003	1986	57.4		
12.62%	3.55444	7/9/2003	980	13.6		
21.74%	2.64973	6/10/2003	547	NR		
27.38%	2.33407	6/23/2003	248	NR		
35.12%	1.99627	6/25/2003	360	NR	625	81.9
	90 th Perce	entile (all)	1584	46.5		

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-49 of C-51 Table C-35. Required Load Reduction for Hiwassee River at Mile 13.4 – E. Coli Analysis

	E. Coli		
Sample Date	Sample Conc.	Required Load Reduction	
	[cts/100 ml]	[%]	
12/15/98	980	13.6	
3/9/99	170	NR	
6/8/99	2	NR	
9/14/99	19	NR	
12/14/99	13	NR	
3/15/00	260	NR	
6/19/00	4	NR	
9/5/00	9	NR	
12/4/00	93	NR	
3/14/01	>2400	>64.7	
9/11/01	4	NR	
3/25/02	170	NR	
9/4/02	3	NR	
12/17/02	52	NR	
3/26/03	40	NR	
6/17/03	2400	64.7	
9/8/03	27	NR	
12/2/03	54	NR	
3/9/04	1200	29.4	
90 th Percentile (all)	1440	29.4	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-50 of C-51

Table C-36. Required Load Reduction for Hiwassee River at Mile 13.4 – Fecal Coliform Analysis

	Fecal C	oliform
Sample Date	Sample Conc.	Required Load Reduction
	[cts/100 ml]	[%]
12/15/98	860	NR
3/9/99	770	NR
6/8/99	13	NR
9/14/99	16	NR
12/14/99	430	NR
3/15/00	3900	76.9
6/19/00	15	NR
9/5/00	19	NR
12/4/00	93	NR
3/14/01	5000	82.0
9/11/01	38	NR
3/25/02	190	NR
9/4/02	7	NR
12/17/02	160	NR
3/26/03	56	NR
6/17/03	2100	57.1
12/2/03	70	NR
3/9/04	770	NR
90 th Percentile (all)	2640	65.9

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page C-51 of C-51

Table C-37. Required Load Reduction for Hiwassee River at Mile 15.6 – E. Coli Analysis

	E. Coli		
Sample Date	Sample Conc.	Required Load Reduction	
	[cts/100 ml]	[%]	
4/27/98	27	NR	
4/28/98	51	NR	
7/13/98	20	NR	
7/14/98	17	NR	
7/15/98	13	NR	
5/3/99	260	NR	
5/4/99	120	NR	
8/30/99	36	NR	
8/31/99	25	NR	
9/1/99	48	NR	
90 th Percentile (all)	120	0.0	

Table C-38. Required Load Reduction for Hiwassee River at Mile 15.6 – Fecal Coliform Analysis

	Fecal Coliform		
Sample Date	Sample Conc.	Required Load Reduction	
	[cts/100 ml]	[%]	
4/27/98	70	NR	
4/28/98	104	NR	
7/13/98	34	NR	
7/14/98	110	NR	
7/15/98	112	NR	
5/3/99	240	NR	
5/4/99	140	NR	
8/30/99	60	NR	
8/31/99	30	NR	
9/1/99	39	NR	
90 th Percentile (all)	140	0.0	

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-1 of D-15

APPENDIX D

Dynamic Loading Model Methodology

DYNAMIC LOADING MODEL METHOD

D.1 Model Selection

The Loading Simulation Program C++ (LSPC) was selected for TMDL analysis of E. coli-impaired waters in the Hiwassee River watershed. LSPC is a dynamic watershed model based on the Hydrologic Simulation Program - Fortran (HSPF) and is well suited to demonstrate compliance with the 200 counts/100 mL geometric mean standard. LSPC was used to simulate the buildup and washoff of fecal coliform bacteria from land surfaces in response to storm events, loading from point sources, and compute the resulting water quality response. From model output, instream 30-day geometric mean concentrations were computed, critical conditions identified, existing loads determined, and reductions required to meet target concentrations (standard - MOS) were calculated.

D.2 Model Set Up

The Chatata Creek, Chestuee Creek, Oostanaula Creek, and North Mouse Creek watersheds were delineated into subwatersheds in order to facilitate model hydrologic and water quality calibration; and to characterize relative fecal coliform contributions from significant contributing drainage areas. Boundaries were constructed so that subwatershed "pour points" coincided with HUC-12 delineations, 303(d)-listed waterbodies, and water quality monitoring stations. Watershed delineation was based on the Rf3 stream coverage and Digital Elevation Model (DEM) data. This discretization allows management and load reduction alternatives to be varied by subwatershed.

Several computer-based tools were utilized to generate input data for the LSPC model. The Watershed Characterization System (WCS), a geographic information system (GIS) tool, was used to display, analyze, and compile available information to support water quality model simulations for selected subwatersheds. This information includes land use categories, point source dischargers, soil types and characteristics, population data (human and livestock), and stream characteristics. Results of the WCS characterization was input into the Fecal Coliform Loading Estimation Spreadsheet (FCLES), developed by Tetra Tech, Inc., to estimate LSPC input parameters associated with fecal coliform buildup (loading rates) and subsequent washoff from land surfaces. In addition, FCLES was used to estimate direct sources of fecal coliform loading to water bodies from leaking septic systems and animals having access to streams. Information from the WCS and FCLES utilities were used as initial input for variables in the LSPC model.

An important factor influencing model results is the precipitation data contained in the meteorological data files used in these simulations. The pattern and intensity of rainfall affects the buildup and washoff of fecal coliform bacteria from the land into the streams, as well as the dilution potential of the stream. Weather data from the Chattanooga Airport meteorological station was available for the time period from January 1970 through June 2004. Meteorological data for a selected 11-year period was used for all simulations. The first year of this period was used for model stabilization with simulation data from the subsequent 10-year period (7/1/94 – 6/30/04) used for TMDL analysis.

D.3 Model Calibration

The calibration of the LSPC watershed model involves both hydrology and water quality components. The model must first be calibrated to appropriately represent hydrologic response to meteorological conditions before water quality calibration and subsequent simulations can be performed.

D.3.1 Hydrologic Calibration

Hydrologic calibration of the watershed model involves comparison of simulated streamflow to historic streamflow data from U. S. Geological Survey (USGS) stream gaging stations for the same period of time. A USGS continuous record station located in the Oostanaula Creek watershed with a sufficiently long and recent historical record was selected as the basis of the hydrology calibration. The USGS station was selected based on similarity of drainage area, Level IV ecoregion, land use, and topography. The calibration involved comparison of simulated and observed hydrographs until statistical stream volumes and flows were within acceptable ranges as reported in the literature (Lumb, et al., 1994).

Initial values for hydrologic variables were taken from an EPA developed default data set. During the calibration process, model parameters were adjusted within reasonable constraints until acceptable agreement was achieved between simulated and observed streamflow. Model parameters adjusted include: evapotranspiration, infiltration, upper and lower zone storage, groundwater storage, recession, losses to the deep groundwater system, and interflow discharge.

The results of the hydrologic calibration for Oostanaula Creek near Sanford, USGS Station 03565500, are shown in Table D-1 and Figure D-1.

D.3.2 Water Quality Calibration

After hydrologic calibration, the watershed model was calibrated for water quality through comparison of simulated fecal coliform concentrations to instream monitoring data at a specified location. Watershed data, produced with WCS, were processed through the FCLES spreadsheet to generate fecal coliform loading data for use as <u>initial</u> input to the LSPC model. In the model, instream decay of fecal coliform bacteria was estimated using the values reported in Lombardo (1972). For freshwater streams, decay ranges from 0.008 hr⁻¹ to 0.13 hr⁻¹, with a median value of 0.048 hr⁻¹. The value of 0.083 hr⁻¹ was used as initial input to model simulations.

D.3.2.1 Point Sources

For existing conditions, NPDES facilities located in modeled watersheds are represented as point sources of average (constant) flow and concentration based on the facility's flow and effluent fecal coliform concentration as reported on Discharge Monitoring Reports.

D.3.2.2 Nonpoint Sources

A number of nonpoint source categories are not associated with land loading processes and are represented as direct, instream source contributions in the model. These may include, but are not limited to, failing septic systems, leaking sewer lines, animals in streams, illicit connections, direct discharge of raw sewage, and undefined sources. All other nonpoint sources involve land loading of fecal coliform bacteria and washoff as a result of storm events. Only a portion of the load from

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-4 of D-15

these sources is actually delivered to streams due to the mechanisms of washoff (efficiency), decay, and incorporation into soil (adsorption, absorption, filtering) before being transported to the stream. Therefore, land loading nonpoint sources are represented as indirect contributions to the stream. Buildup, washoff, and die-off rates are dependent on seasonal and hydrologic processes.

D.3.2.2.1 Wildlife

Wildlife deposit fecal coliform bacteria, with their feces, onto land surfaces where it can be transported during storm events to nearby streams. The overall deer density for Tennessee was estimated by the Tennessee Wildlife Resources Agency (TWRA) to be 23 animals per square mile. In order to account for higher density areas and loading due to other species, a conservative density of 45 animals per square mile was used for modeling purposes. Fecal coliform loads due to deer are estimated by EPA to be 5.0×10^8 counts/animal/day. The resulting fecal coliform loading on a unit area basis is 3.52×10^7 counts/acre/day and is considered background.

D.3.2.2.2 Land Application of Agricultural Manure

In the water quality model, livestock populations are distributed to subwatersheds based on information derived from WCS. Fecal coliform loading rates were calculated from livestock populations based on manure application rates, literature values for bacteria concentrations in livestock manure, and the following assumptions:

- Fecal content in manure was adjusted to account for die-off due to known treatment/storage methods.
- Manure application rates from the various animal sources are applied according to application practices throughout the year.
- The fraction of manure available for runoff is dependent on the method of manure application. In the water quality model, the fraction available is estimated based on incorporation into the soil.

Fecal coliform production rates used in the model for beef cattle, dairy cattle, hogs, and chicken are 1.06×10^{11} counts/day/beef cow, 1.04×10^{11} counts/day/dairy cow, 1.24×10^{10} counts/day/hog, and 1.38×10^{8} counts/day/chicken (NCSU, 1994).

D.3.2.2.3 Grazing Animals

Cattle spend time grazing on pastureland and deposit feces onto the land. During storm events, a portion of this material containing fecal coliform bacteria is transported to streams. Beef cattle are assumed to spend all their time in pasture. The percentage of feces deposited during grazing time is used to estimate fecal coliform loading rates from pastureland. Because there is no assumed monthly variation in animal access to pastures in east Tennessee, the fecal loading rate does not vary significantly throughout the year. Therefore, the loading rate to pastureland is assumed to be relatively constant within each subwatershed. However, this rate varies across subwatersheds depending on livestock population. The approximate loads from grazing cattle vary from 3.495 x 10^{10} to 1.165 x10¹¹ counts/acre-day. Contributions of fecal coliform from wildlife (as noted in Section D.3.2.2.1) are also included in these rates.

D.3.2.2.4 Urban Development

Urban land use represented in the MRLC database includes areas classified as: high intensity commercial, industrial, transportation; high intensity residential; and low density residential. Associated with each of these classifications is a percent of the land area that is impervious. A single, area-weighted loading rate from urban areas is used for each subwatershed in the model and is based on the percentage of each urban land use type in the watershed and buildup and accumulation rates referenced in Horner (Horner, 1992). In the water quality calibrated model, this rate varies from 1.0×10^9 to 1.2×10^{10} counts/acre-day and is assumed constant within each subwatershed throughout the year.

D.3.2.2.5 Other Direct Sources

As previously stated, there are a number of nonpoint sources of fecal coliform bacteria that are not associated with land loading and washoff processes. These include animal access to streams, failing septic systems, illicit discharges, and other undefined sources. In each subwatershed, these miscellaneous sources have been modeled as point sources of constant flow and fecal coliform concentration and are referred to as "other direct sources" in this document. The <u>initial</u> baseline values of flow and concentration were estimated using the FCLES spreadsheets and the following assumptions:

- The load attributed to animals having access to streams is initially based on the beef cow population in the watershed. The percentage of animals having access to streams is derived from assumptions on animals in operations that are adjacent to streams and seasonal and behavioral assumptions. Literature values were used to estimate the fecal coliform bacteria concentration in beef cow manure.
- The initial baseline loads attributable to leaking septic systems is based on an assumed failure rate of 20 percent.

Flow and concentration variables were adjusted during water quality calibration to best-fit simulated in-stream fecal coliform concentrations during dry weather conditions.

D.3.2.3 Water Quality Calibration Results

During water quality calibration, model parameters were adjusted within reasonable limits until acceptable agreement between simulation output and instream observed data was achieved. Model variables adjusted include:

- Rate of fecal coliform bacteria accumulation
- Maximum storage of fecal coliform bacteria
- Rate of surface runoff that will remove 90% of stored fecal coliform bacteria
- Concentration of fecal coliform bacteria in interflow
- Concentration of fecal coliform bacteria in groundwater
- Concentration of fecal coliform bacteria and rate of flow of "other direct sources".
- In-stream fecal coliform decay (die-off) rate

At times, a high observed value may not have been simulated in the model due to the absence of rainfall at the meteorological station as compared to localized rainfall occurring in the watershed, or as the result of an unknown source that is not included in the model.

Water quality calibration for the Hiwassee River E. coli-impaired subwatersheds was performed at monitoring locations with adequate water quality data for model calibration. The results of the Hiwassee River subwatershed water quality calibrations for Chatata Creek, Chestuee Creek, Oostanaula Creek, and North Mouse Creek are shown in Figures D-2 through D-5, respectively. Results show that the model adequately simulates peaks in fecal coliform bacteria in response to rainfall events and pollutant loading dynamics.

D.4 Margin of Safety

There are two methods for incorporating an MOS in the analysis: a) implicitly incorporate the MOS using conservative model assumptions to develop allocations; or b) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. For TMDL analyses using LSPC, both an explicit and implicit MOS were used. The explicit MOS is 20 counts/100 mL, equal to 10% of the 200 counts/100 mL geometric standard. This results in a target fecal coliform concentration of 180 counts/100 mL. The implicit MOS includes the use of conservative modeling assumptions and a 10-year continuous simulation that incorporates a wide range of meteorological events. Conservative modeling assumptions used include: septic systems discharging directly into the streams; development of the TMDL using loads based on the design flow and fecal coliform permit limits of NPDES facilities; and all land uses connected directly to streams.

Note: In this document, the water quality standard is the instream goal. The term "target concentration" reflects the application of an explicit Margin of Safety (MOS) to the water quality standard. See Section 5.0.

D.5 Determination of Existing Loading

The critical condition for nonpoint source fecal coliform loading is typically an extended dry period followed by a rainfall runoff event. During the dry weather period, fecal coliform bacteria builds up on the land surface, and is washed off by rainfall. The critical condition for point source loading occurs during periods of low streamflow when dilution is minimized. Both conditions are simulated in the water quality model.

For each modeled subwatershed, the 10-year simulation period was used to generate daily mean instream concentrations. These were used to calculate continuous 30-day geometric mean concentrations that were then compared to the target concentration. The 10-year simulation period contained a range of hydrologic conditions that included both low and high streamflows. The 30-day critical period for each subwatershed is the period preceding the highest simulated violation of the geometric mean standard. The magnitude of the highest peak, together with the corresponding simulated flow, represents the existing fecal coliform loading to the waterbody.

The drainage areas of the waterbody segments (Chatata Creek, Chestuee Creek, Oostanaula Creek, and North Mouse Creek) coincided with HUC-12 subwatersheds, water quality monitoring stations, and the outlets (endpoints) of 303(d)-Listed segments. The waterbody segments were at the "pour points" of these subwatersheds. In addition, the pour points coinciding with water quality monitoring stations had sufficient fecal coliform data for water quality calibration. Existing loads and

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-7 of D-15 n a subwatershed basis for the Chatata Creek,

required load reductions were determined on a subwatershed basis for the Chatata Creek, Chestuee Creek, Oostanaula Creek, and North Mouse Creek waterbodies.

The results of the 10-year simulation used to determine existing conditions for Chatata Creek, Chestuee Creek, Oostanaula Creek, and North Mouse Creek are shown in Figures D-6 through D-9, respectively.

D.6 Determination of TMDL

The TMDL process quantifies the amount of a pollutant that can be assimilated in a waterbody, identifies the sources of the pollutant, and recommends regulatory or other actions to be taken to achieve compliance with applicable water quality standards based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (Waste Load Allocations), nonpoint source loads (Load Allocations), and an appropriate margin of safety (MOS) that takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

$$\mathsf{TMDL} = \Sigma \mathsf{WLAs} + \Sigma \mathsf{LAs} + \mathsf{MOS}$$

The objective of a TMDL is to allocate loads among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and water quality standards achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time, toxicity, or <u>other appropriate measure</u>.

For the purposes of these analyses, fecal coliform TMDLs are expressed as the percent reduction in instream loading required to decrease the existing instream 30-day geometric mean concentration (as defined in Section C.5) to the target of 180 counts/100 mL. The required reduction can be determined directly using the following equation:

$$TMDL = RILR = \frac{[(C) (Q) (Const)]_{Existing} - [(C) (Q) (Const)]_{Target}}{[(C) (Q) (Const)]_{Existing}} \times 100$$
where: RILR = Required Instream Load Reduction [%]
C = Instream Concentration [counts/100 mL]

Q = Daily Mean Flow [cfs] Const = Unit Conversion Constant

Since the streamflow for the existing condition is equal to the streamflow for the target condition:

TMDL = RILR =
$$\frac{(Q) (Const)}{(Q) (Const)} \times \frac{[C]_{Existing} - [C]_{Target}}{[C]_{Existing}} \times 100$$

therefore:

$$TMDL = RILR = \underbrace{[C]_{Existing} - [C]_{Target}}_{[C]_{Existing}} x 100$$

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-8 of D-15

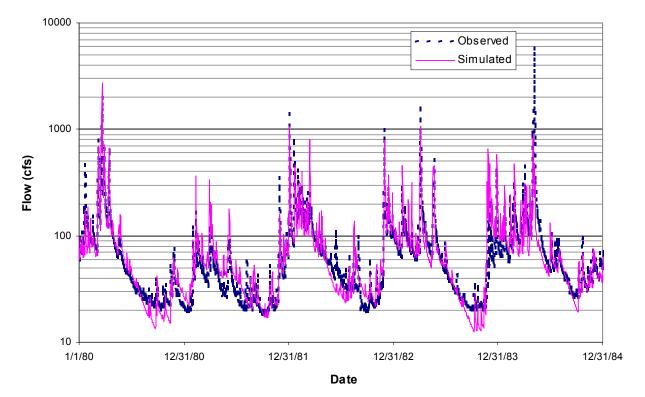
As an example, for the subwatershed at the pour point of the 303(d)-Listed segment of Chatata Creek, the simulated 30-day geometric mean concentration for the existing loading condition (ref.: Section D.5) is 2461 counts/100 mL. The required instream load reduction is calculated by:

(2461 cts/100 mL) – (180 cts/100 mL) TMDL = RILR = ______ x 100 (2461 cts/100 mL)

TMDL = RILR = 92.7%

Required load reductions are summarized in Table D-2 for modeled subwatersheds.

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-9 of D-15 Table D-1. Hydrologic Calibration Summary: Oostanaula Cr. near Sanford (USGS 03565500)


Simulation Name:	OosCAP05		
(Chattanooga Airport Raingage)	Oostanaula Cr. near Sanford (USGS 03565500)	Watershed Area (ac):	36480.00
Period for Flow Analysis			
Begin Date:	01/01/80	Baseflow PERCENTILE:	2.5
End Date:	12/31/89	Usually 1%-5%	
Total Simulated In-stream Flow:	163.22	Total Observed In-stream Flow:	157.99
Total of highest 10% flows:	68.93	Total of Observed highest 10% flows:	71.81
Total of lowest 50% flows:	28.96	Total of Observed Lowest 50% flows:	27.01
Simulated Summer Flow Volume (months 7-9):	16.63	Observed Summer Flow Volume (7-9):	15.35
Simulated Fall Flow Volume (months 10-12):	30.75	Observed Fall Flow Volume (10-12):	25.59
Simulated Winter Flow Volume (months 1-3):	74.61	Observed Winter Flow Volume (1-3):	68.62
Simulated Spring Flow Volume (months 4-6):	41.23	Observed Spring Flow Volume (4-6):	48.43
Total Simulated Storm Volume:	130.47	Total Observed Storm Volume:	124.96
Simulated Summer Storm Volume (7-9):	8.64	Observed Summer Storm Volume (7-9):	7.28
Errors (Simulated-Observed)		Recommended Criteria	Last run
Error in total volume:	3.31	10	
Error in 50% lowest flows:	7.23	10	
Error in 10% highest flows:	-4.01	15	
Seasonal volume error - Summer:	8.33	30	
Seasonal volume error - Fall:	20.16	30	
Seasonal volume error - Winter:	8.73	30	
Seasonal volume error - Spring:	-14.86	30	
Error in storm volumes:	4.41	20	

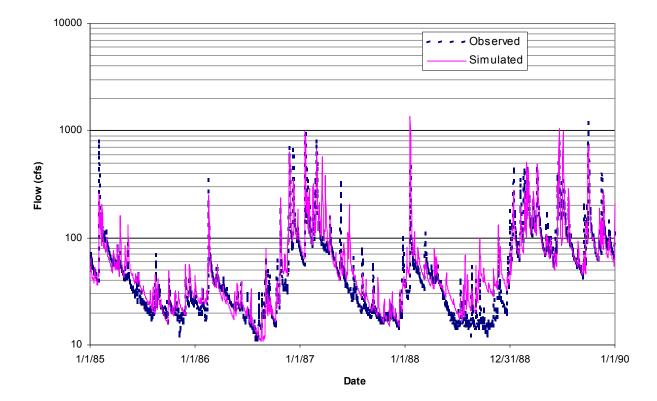

		Existing C	TMDL	
Impaired Waterbody Name	Waterbody ID	Date(s) of Max. 30-Day Geom. Mean	Max. 30-Day Geom. Mean Concentration	- Required Load Reduction
		Concen.	[cts./100 mL]	[%]
Chatata Creek	TN06020002012 - 1000	11/22/98	2461	92.7
Chestuee Creek	TN06020002082 – 2000	11/22/98	750	75.8
Oostanaula Creek (Mouth)	TN06020002083 – 1000	9/23/96	219	17.8
Oostanaula Creek (Mile 5.7)	TN06020002083 – 2000	9/23/96	252	28.6
Oostanaula Creek (Mile 26.6)	TN06020002083 – 3000	9/22/96	273	34.1
Oostanaula Creek (Mile 34.2)	TN06020002083 - 4000	7/6/03	252	28.6
Oostanaula Creek (Mile 42.7)	TN06020002083 – 5000	NA*	NA*	28.6*
North Mouse Creek	TN06020002084 - 1000	11/23/98	1145	84.3

Table D-2. TMDLs for Hiwassee River Waterbodies – Surrogate Fecal Coliform 30-Day Geometric Mean Target

* No data in impaired waterbody. Percent reduction based on results at Mile 34.2.

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-11 of D-15

D-11

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-12 of D-15

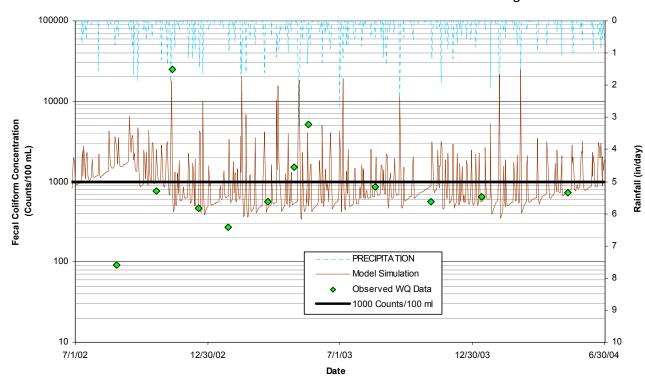


Figure D-2. Water Quality Calibration of Chatata Creek at Mile 0.5 (CHATA000.5BR)

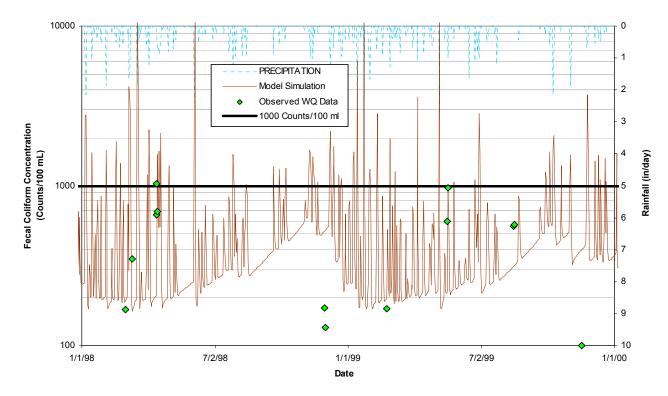


Figure D-3. Water Quality Calibration of Chestuee Creek at Mile 42.5 (CHEST042.5MM)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-13 of D-15

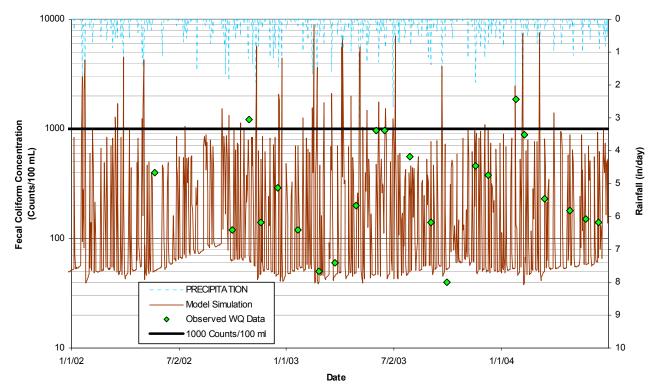
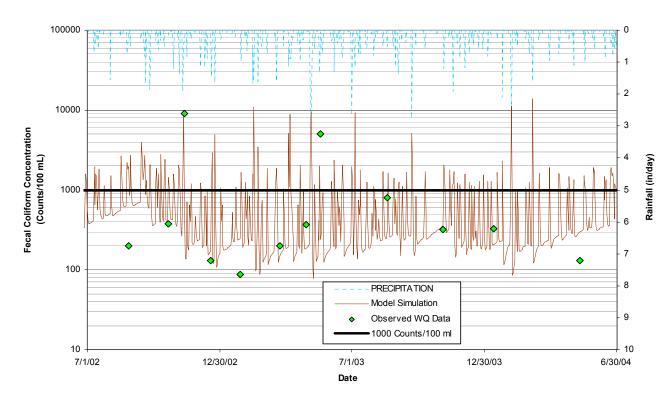



Figure D-4. Water Quality Calibration of Oostanaula Creek at Mile 26.6 (OOSTA026.6MM)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page D-14 of D-15

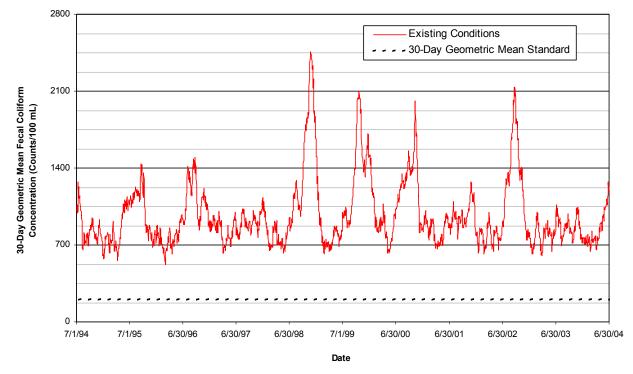


Figure D-6. Simulated 30-Day Geometric Mean Fecal Coliform Concentrations for Chatata Creek at the Mouth for Existing Conditions.



Figure D-7. Simulated 30-Day Geometric Mean Fecal Coliform Concentrations for Chestuee Creek at the Confluence with Middle Creek for Existing Conditions.

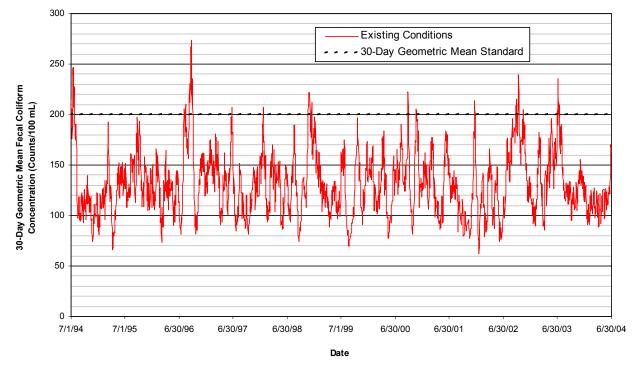


Figure D-8. Simulated 30-Day Geometric Mean Fecal Coliform Concentrations for Oostanaula Creek at Mile 26.6 for Existing Conditions.

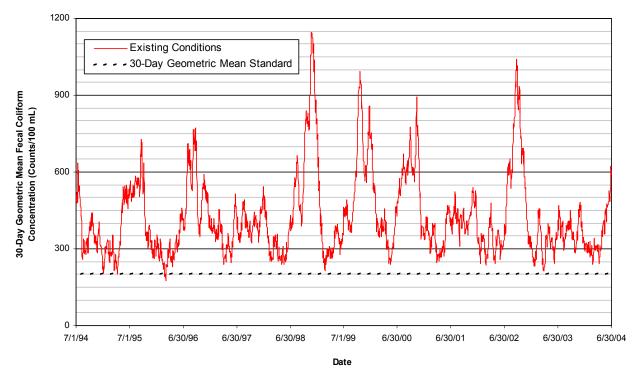


Figure D-9. Simulated 30-Day Geometric Mean Fecal Coliform Concentrations for North Mouse Creek at the Mouth for Existing Conditions.

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page E-1 of E-5

APPENDIX E

Oostanaula Creek TMDL Revisited

REVISED OOSTANAULA CREEK TMDL

TDEC's Division of Water Pollution Control (DWPC) previously developed a fecal coliform TMDL for Oostanaula Creek based on water quality data collected at Mile 28.4 during the period December 1982 through September 1999. USEPA approved the Oostanaula Creek TMDL in May of 2002. The 2002 EPA-approved Fecal Coliform TMDL stated the following: "Fecal coliform grab samples, collected quarterly at the sampling station at mile 28.4 on Oostanaula Creek in the Hiwassee River watershed were used for comparison with the simulated daily model results. Water quality calibration was conducted at mile 28.4 and extended, through model simulation, to the mouth of Oostanaula Creek to complete the TMDL evaluation." The required reduction at mile 28.4, according to the model simulation, was 96.5%. The subsequent reduction of pathogen (fecal coliform) loading to Oostanaula Creek was 98% at the mouth.

Additional pathogen data (E. coli and fecal coliform) collected at mile 28.4 and other monitoring locations on Oostanaula Creek warrants re-examination and revision of the Oostanaula Creek TMDL. Data were collected approximately quarterly for the period 12/82-9/99 for the 2002 EPA-approved Fecal Coliform TMDL at Oostanaula Creek at Mile 28.4. However, nine samples (9/96-9/98) had only sample month and year recorded with sample data because original lab sheets had been misplaced and data spreadsheets did not provide the day of the month these samples were collected. These 9 samples were used in the original analysis, with minimal influence on model results; however, for current Load Duration Curve analysis, the daily flow associated with each sample is critical to the analysis and also was not recorded with the samples. Therefore, these data were not utilized in the current analysis. Data collected after the original TMDL analysis, during the period 12/98-6/04, were used for comparison to the original TMDL (12/82-6/96) by Load Duration Curve analysis (Figure E-1). LDC analysis was chosen because the method provides qualitative and quantitative graphical data representations that are more easily compared than model simulations.

Table E-1 presents the summary results from LDC analyses of historic versus current pathogen data (fecal coliform) at Oostanaula Creek Mile 28.4. Figure E-1 clearly shows significant improvement has been achieved for pathogen loading in Oostanaula Creek. While required load reduction has been reduced from over 95% to approximately 70%, loading has apparently been reduced by nearly an order of magnitude. The numerical results of the LDC analysis are comparable to the previous TMDL model results (EPA-approved TMDL) versus the current TMDL analysis (see Table 8, and Appendices C and D). Complete LDC results are presented in Table C-19 for the current analysis and Table E-2 for the 2002 EPA approved analysis.

Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page E-3 of E-5

Lable F-1 (Comparison of Foca	I Coliform LDC Analyses for Oostanaula	(rook Milo 28 /
	I GUIIIUIIII EDG ANAIVSES IUI OUSLANAUIA	

TMDL Analysis	2002 EPA- approved	Current Analysis (2005)
Sample Dates	12/82 — 6/96	12/98 – 6/04
Number of Samples	51	32
Number > 1000 Counts/100 mL	28 (54.9%)	6 (18.8%)
90th Percentile (Counts/100 mL) (High Flows)	73,000	6,630
90th Percentile (Counts/100 mL) (Moist Conditions)	27,800	2,384
90th Percentile (Counts/100 mL) (Mid-Range Flows)	13,190	1,260
90th Percentile (Counts/100 mL) (Dry Conditions)	6,990	788
90th Percentile (Counts/100 mL) (Low Flows)	3,770	861
90th Percentile (Counts/100 mL) (All Data)	19,200	2,790
Required Reduction (%)	95.3	67.7

Oostanaula Creek Load Duration Curve *(1982 - 2004 Monitoring Data)* Site: OOSTA028.4MM

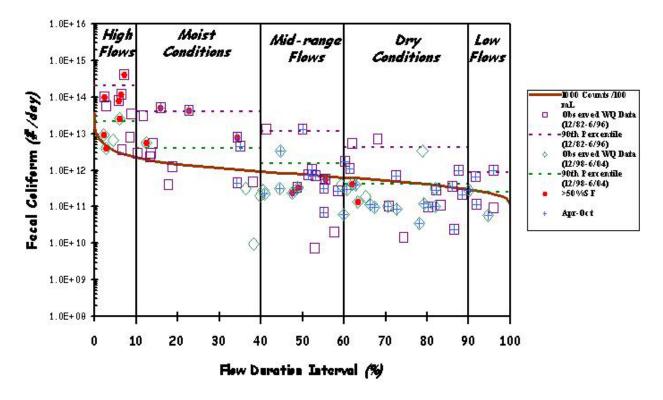


Figure E-1. Oostanaula Creek mile 28.4 historical versus recent fecal coliform monitoring data.

Patho	ger	NDL
-	_	~

Page I	E-4 of E-5
--------	------------

Sample Date Flow PDFE Sample Conc. Required Load Reduction [cfs] [%] [cts/100 ml] [%] 12/16/82 209.68 2.451% 19200 95.3 377/89 189.10 2.837% 12000 92.5 12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/14/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.265% 31000 97.1					
Sample Date FUW FDFE Sample Conc. Load Reduction [cfs] [%] [cts/100 ml] [%] 12/16/82 209.68 2.451% 19200 95.3 3/7/89 189.10 2.837% 12000 96.5 12/14/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/90 81.57 11.685% 15000 94.0 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1				⊢ecal C	
Date Conc. Load Reduction Reduction [cfs] [%] [cts/100 ml] [%] 12/16/82 209.68 2.451% 19200 95.3 3/7/89 189.10 2.837% 12000 92.5 12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 15000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.	Sample	Flow PDFE	PDFE	Sample	
[cfs] [%] [cts/100 m]] [%] 12/16/82 209.68 2.451% 19200 95.3 3/7/89 189.10 2.837% 12000 92.5 12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/14/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 <					
12/16/82 209.68 2.451% 19200 95.3 3/7/89 189.10 2.837% 12000 92.5 12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR <td> </td> <td>[cfe]</td> <td>[0/_1</td> <td>[cts/100 m^{1]}</td> <td></td>		[cfe]	[0/_1	[cts/100 m ^{1]}	
3/7/89 189.10 2.837% 12000 92.5 12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR	12/16/02		6 4		
12/4/91 124.70 5.861% 26000 96.5 3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1					
3/10/87 116.77 6.496% 40000 97.8 3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2					
3/8/83 115.80 6.558% 1290 30.2 12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR					
12/9/86 109.30 7.205% 150000 99.4 12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0					
12/13/83 98.05 8.512% 3300 72.7 3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR					
3/31/93 95.35 8.935% 14700 93.9 12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8					
12/12/94 88.31 10.391% 1320 31.8 3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR					
3/15/90 81.57 11.685% 15000 94.0 3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7					
3/13/95 75.12 13.365% 1260 28.6 3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7 9/13/94 30.40 51.319% 960 NR <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3/18/96 74.26 13.564% 1600 43.8 3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7 9/13/94 30.40 51.319% 960 NR 6/20/94 29.81 52.875% 10 NR 6/1					
3/12/91 73.12 13.925% 3000 70.0 6/10/92 67.04 15.966% 31000 97.1 12/11/95 62.98 17.820% 250 NR 3/14/94 61.21 18.728% 810 NR 6/9/92 54.68 22.598% 31000 97.1 6/12/95 42.35 34.246% 7600 88.2 6/7/83 42.24 34.370% 420 NR 6/7/89 41.53 35.042% 4500 80.0 12/9/92 39.19 38.166% 480 NR 3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7 9/13/94 30.40 51.319% 960 NR 6/20/94 29.81 52.389% 1400 35.7 3/15/88 29.54 52.875% 10 NR 6/1					
6/10/9267.0415.966%3100097.112/11/9562.9817.820%250NR3/14/9461.2118.728%810NR6/9/9254.6822.598%3100097.16/12/9542.3534.246%760088.26/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/11/9128.2555.251%460NR6/11/9128.2555.251%460NR9/13/8828.1355.587%30NR9/13/8828.1355.587%30NR9/13/9226.5058.673%420NR	3/18/96	74.26	13.564%	1600	43.8
12/11/9562.9817.820%250NR3/14/9461.2118.728%810NR6/9/9254.6822.598%3100097.16/12/9542.3534.246%760088.26/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.875%10NR6/12/8428.2955.189%100NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR9/13/8428.1355.587%30NR9/13/9426.5058.673%420NR	3/12/91	73.12	13.925%	3000	70.0
3/14/9461.2118.728%810NR6/9/9254.6822.598%3100097.16/12/9542.3534.246%760088.26/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/12/8428.2955.189%100NR6/12/8428.2955.251%460NR9/13/8828.1355.587%800NR9/13/8828.1355.587%30NR9/13/8828.1355.587%420NR9/13/8428.1355.587%30NR9/13/8828.1355.587%30NR9/13/8828.1355.587%30NR9/15/9226.5058.673%420NR	6/10/92	67.04	15.966%	31000	97.1
6/9/9254.6822.598%3100097.16/12/9542.3534.246%760088.26/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR9/13/8828.1355.587%30NR9/13/9226.5058.673%420NR	12/11/95	62.98	17.820%	250	NR
6/12/9542.3534.246%760088.26/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR9/13/8828.1355.587%30NR9/13/9226.5058.673%420NR	3/14/94	61.21	18.728%	810	NR
6/7/8342.2434.370%420NR6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR9/13/8828.1355.587%800NR9/13/8828.1355.587%30NR9/13/9226.5058.673%420NR	6/9/92	54.68	22.598%	31000	97.1
6/7/8941.5335.042%450080.012/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR	6/12/95	42.35	34.246%	7600	88.2
12/9/9239.1938.166%480NR3/13/8436.8641.339%1450093.83/12/8531.8448.706%420NR6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR	6/7/83	42.24	34.370%	420	NR
3/13/84 36.86 41.339% 14500 93.8 3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7 9/13/94 30.40 51.319% 960 NR 6/20/94 29.81 52.389% 1400 35.7 3/15/88 29.54 52.875% 10 NR 6/13/90 29.33 53.161% 980 NR 6/12/84 28.29 55.189% 100 NR 6/11/91 28.25 55.251% 460 NR 9/13/88 28.13 55.587% 30 NR 9/13/88 28.13 55.587% 30 NR 9/15/92 26.50 58.673% 420 NR	6/7/89	41.53	35.042%	4500	80.0
3/12/85 31.84 48.706% 420 NR 6/10/96 31.08 50.062% 17000 94.7 9/13/94 30.40 51.319% 960 NR 6/20/94 29.81 52.389% 1400 35.7 3/15/88 29.54 52.875% 10 NR 6/13/90 29.33 53.161% 980 NR 6/12/84 28.29 55.189% 100 NR 6/11/91 28.25 55.251% 460 NR 9/13/88 28.13 55.587% 30 NR 12/12/90 27.09 57.554% 30 NR 9/15/92 26.50 58.673% 420 NR	12/9/92	39.19	38.166%	480	NR
6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR	3/13/84	36.86	41.339%	14500	93.8
6/10/9631.0850.062%1700094.79/13/9430.4051.319%960NR6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR					
9/13/94 30.40 51.319% 960 NR 6/20/94 29.81 52.389% 1400 35.7 3/15/88 29.54 52.875% 10 NR 6/13/90 29.33 53.161% 980 NR 6/12/84 28.29 55.189% 100 NR 6/11/91 28.25 55.251% 460 NR 9/13/88 28.13 55.587% 800 NR 12/12/90 27.09 57.554% 30 NR 9/15/92 26.50 58.673% 420 NR			50.062%	17000	94.7
6/20/9429.8152.389%140035.73/15/8829.5452.875%10NR6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR				960	NR
3/15/88 29.54 52.875% 10 NR 6/13/90 29.33 53.161% 980 NR 6/12/84 28.29 55.189% 100 NR 6/11/91 28.25 55.251% 460 NR 9/13/88 28.13 55.587% 800 NR 12/12/90 27.09 57.554% 30 NR 9/15/92 26.50 58.673% 420 NR					35.7
6/13/9029.3353.161%980NR6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR		29.54			
6/12/8428.2955.189%100NR6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR					
6/11/9128.2555.251%460NR9/13/8828.1355.587%800NR12/12/9027.0957.554%30NR9/15/9226.5058.673%420NR					
9/13/88 28.13 55.587% 800 NR 12/12/90 27.09 57.554% 30 NR 9/15/92 26.50 58.673% 420 NR					
12/12/90 27.09 57.554% 30 NR 9/15/92 26.50 58.673% 420 NR					
9/15/92 26.50 58.673% 420 NR					
	9/18/95	25.77	60.341%	2700	66.7

Table E-2. Required Load Reduction for Oostanaula Creek at Mile 28.4 – Fecal Coliform Analysis (2002 EPA Approved TMDL)

Hiwassee River Watershed (HUC 06020002)

Pathogen TMDL

Page E-5 of E-5

, , , , , , , , , , , , , , , , , , , ,							
			Fecal C	Coliform			
Sample Date	Flow	PDFE	Sample Conc.	Required Load Reduction			
	[cfs]	[%]	[cts/100 ml]	[%]			
6/9/87	25.28	61.399%	1730	48.0			
12/11/84	25.05	61.996%	8700	89.7			
12/6/93	22.47	67.745%	12800	93.0			
12/13/88	21.06	70.707%	200	NR			
6/23/93	20.27	72.349%	1400	35.7			
3/11/86	19.45	74.340%	30	NR			
9/11/84	16.73	80.276%	230	NR			
6/7/88	15.92	82.068%	720	NR			
12/10/85	15.42	83.263%	280	NR			
9/10/91	14.12	86.100%	1000	NR			
9/15/87	13.96	86.424%	70	NR			
9/11/90	13.46	87.631%	3000	70.0			
6/18/86	13.08	88.427%	670	NR			
9/10/85	11.62	91.501%	2300	60.9			
9/23/86	11.48	91.824%	400	NR			
9/20/83	9.20	95.918%	4400	79.5			
12/8/87	9.13	96.055%	400	NR			
	90 th Perce	entile (all)	19200	95.3			

Table E-2. Required Load Reduction for Oostanaula Creek at Mile 28.4 – Fecal Coliform Analysis (2002 EPA Approved TMDL) (Cont.)

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page F-1 of F-5

APPENDIX F

Determination of WLAs & LAs

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page F-2 of F-5

The TMDL process quantifies the amount of a pollutant that can be assimilated in a waterbody, identifies the sources of the pollutant, and recommends regulatory or other actions to be taken to achieve compliance with applicable water quality standards based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (Waste Load Allocations), nonpoint source loads (Load Allocations), and an appropriate margin of safety (MOS) that takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

 $\mathsf{TMDL} = \Sigma \mathsf{WLAs} + \Sigma \mathsf{LAs} + \mathsf{MOS}$

The objective of a TMDL is to allocate loads among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and water quality standards achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time, toxicity, or <u>other appropriate measure</u>.

For pathogen TMDLs in each impaired subwatershed, WLA terms include:

- [∑WLAs]_{WWTF} is the allowable load associated with discharges of NPDES permitted WWTFs located in impaired subwatersheds. Since NPDES permits for these facilities specify that treated wastewater must meet instream water quality standards at the point of discharge, no additional load reduction is required. WLAs for WWTFs are calculated from the facility design flow and the Monthly Average permit limit.
- [∑WLAs]_{CAFO} is the allowable load for all CAFOs in an impaired subwatershed. All wastewater discharges from a CAFO to waters of the state of Tennessee are prohibited, except when either chronic or catastrophic rainfall events cause an overflow of process wastewater from a facility properly designed, constructed, maintained, and operated to contain:
 - All process wastewater resulting from the operation of the CAFO (such as wash water, parlor water, watering system overflow, etc.); plus,
 - All runoff from a 25-year, 24-hour rainfall event for the existing CAFO or new dairy or cattle CAFOs; or all runoff from a 100-year, 24-hour rainfall event for a new swine or poultry CAFO.

Therefore, a WLA of zero has been assigned to this class of facilities.

 [∑WLAs]_{MS4} is the required load reduction for discharges from MS4s. E. coli loading from MS4s is the result of buildup/wash-off processes associated with storm events. The percent load reductions for MS4s are considered to be equal to the load reductions developed for TMDLs.

LA terms include:

- [∑LAs]_{DS} is the allowable E. coli load from "other direct sources". These sources include leaking septic systems, leaking collection systems, illicit discharges, and animals access to streams. The LA specified for all sources of this type is zero counts/day (or to the maximum extent practicable).
- [∑LAs]_{SW} represents the required reduction in E. coli loading from nonpoint sources indirectly going to surface waters from all land use areas (except areas covered by a MS4 permit) as a result of the buildup/wash-off processes associated with storm events. The percent load

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page F-3 of F-5 reductions for precipitation-induced nonpoint sources are considered to be equal to the load reductions developed for TMDLs (and specified for MS4s).

Explicit MOS has already been incorporated into TMDL development as stated in Appendix C and Appendix E. TMDLs, WLAs, & LAs are applied to the entire subwatershed. WLAs & LAs for Hiwassee River waterbodies are summarized in Table F-1.

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page F-4 of F-5

					WLAs	3		LAs	
Drainage Area and/or HUC-12 Subwatershed (03150101)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	WWTFs ^a (Monthly Avg.) E. Coli	Leaking Collection Systems ^b	CAFOs	MS4s [℃]	Precipitation Induced Nonpoint Sources	Other Direct Sources ^d
			[% Red.]	[cts./day]	[cts./day]	[cts./day]	[% Red.]	[% Red.]	[cts./day]
Agency Creek (0605)	Agency Creek	TN06020002001 – 0100	96.0	NA ^e	NA	NA	NA	96.0	0
0602	Hiwassee River	TN06020002008 – 1000	65.9	1.636 x 10 ¹¹	0	NA	NA	65.9	0
	Fillauer Creek	TN06020002009 - 0200		NA ^e	0	NA	>85.7	>85.7	0
0603	Woolen Mill Branch	TN06020002009 - 0300	>92.4	NA ^e	0	NA	>65.0	>65.0	0
	South Mouse Creek	TN06020002009 – 2000		9.542 x 10⁵	0	NA	>92.4	>92.4	0
Little Chatata Creek (0601)	Little Chatata Creek	TN06020002012 - 0200	87.2	NA ^e	0	NA	87.2	87.2	0
Chatata Creek (0601)	Chatata Creek	TN06020002012 - 1000	92.7	NA ^e	0	NA	92.7	92.7	0
Hawkins Branch (0305)	Hawkins Branch	TN06020002018 - 0100	90.2	NA ^e	NA	NA	NA	90.2	0
Dairy Branch (0305)	Dairy Branch	TN06020002018 - 0200	92.9	NA ^e	NA	NA	NA	92.9	0
0501	Little Chestuee Creek	TN06020002082 - 0200	89.5	NA ^e	NA	NA	NA	89.5	0
	Chestuee Creek	TN06020002082 - 2000		1.193 x 10 ⁹	0	NA	NA	87.9	0
	Oostanaula Creek	TN06020002083 – 1000		1.350 x 10 ¹⁰	0	0	NA	17.8	0
0702	Oostanaula Creek	TN06020002083 – 2000	72.2	1.350 x 10 ¹⁰	0	NA	38.4	38.4	0
	Oostanaula Creek	TN06020002083 - 3000		1.350 x 10 ¹⁰	0	NA	72.2	72.2	0
0701	Oostanaula Creek	TN06020002083 - 4000	54.2	NA ^e	0	NA	54.2	54.2	0
0/01	Oostanaula Creek	TN06020002083 - 5000	J7.2	NA ^e	NA	NA	NA	54.2	0

Table F-1. WLAs & LAs for Hiwassee River, Tennessee

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page F-5 of F-5

				WLAs				LAs	
HUC-12 Subwatershed (06020002) Watershed	WWTFs ^a (Monthly Avg.)			Leaking Collection	CAFOs	MS4s ^c	Precipitation Induced	Other Direct	
or Drainage Area	or Drainage waterbody Name waterbo	Waterbody ID	Vaterbody ID	E. Coli	Systems⁵			Nonpoint Sources	Sources ^d
			[% Red.]	[cts./day]	[cts./day]	[cts./day]	[% Red.]	[% Red.]	[cts./day]
0801	North Mouse Creek	TN06020002084 – 1000	84.3	2.018 x 10 ⁹	0	0	84.3	84.3	0
0802	North Mouse Creek	TN06020002084 – 1000	84.3	7.839 x 10 ⁹	0	0	84.3	84.3	0
0803	Spring Creek	TN06020002085 – 1000	87.8	8.109 x 10 ⁷	NA	NA	NA	87.8	0
0604	Rogers Creek	TN06020002087 – 1000	90.0	5.735 x 10 ⁷	NA	NA	NA	90.0	0
Price Creek (0605)	Price Creek	TN06020002088 – 1000	81.9	5.247 x 10 ⁹	0	NA	NA	81.9	0

Table F-1. WLAs & LAs for Hiwassee River, Tennessee (Cont.)

Note: NA = Not Applicable.

a. WLAs for WWTFs expressed as E. coli loads (counts/day).

b. The objective for leaking collection systems is a waste load allocation of zero. It is recognized, however, that a WLA of 0 counts/day may not be practical. For these sources, the WLA is interpreted to mean a reduction in coliform loading to the maximum extent practicable, consistent with the requirement that these sources not contribute to a violation of the water quality standard for E. coli.

c. Applies to any MS4 discharge loading in the subwatershed.

d. The objective for all "other direct sources" is a load allocation of zero. It is recognized, however, that for leaking septic systems a LA of 0 counts/day may not be practical. For these sources, the LA is interpreted to mean a reduction in coliform loading by the application of best management practices, consistent with the requirement that these sources not contribute to a violation of the water quality standard for E. coli.

e. Future WWTFs must meet instream water quality standards at the point of discharge as specified in their NPDES permit.

Final (12/29/05) Hiwassee River Watershed (HUC 06020002) Pathogen TMDL Page G-1 of G-2

APPENDIX G

Public Notice of Proposed Total Maximum Daily Load (TMDL) for Pathogens in the Hiwassee River Watershed (HUC 06020002)

DIVISION OF WATER POLLUTION CONTROL

PUBLIC NOTICE OF AVAILABILITY OF PROPOSED TOTAL MAXIMUM DAILY LOAD (TMDL) FOR PATHOGENS IN THE HIWASSEE RIVER WATERSHED (HUC 06020002), TENNESSEE

Announcement is hereby given of the availability of Tennessee's proposed total maximum daily load (TMDL) for pathogens in the Hiwassee River watershed, located in southeastern Tennessee. Section 303(d) of the Clean Water Act requires states to develop TMDLs for waters on their impaired waters list. TMDLs must determine the allowable pollutant load that the water can assimilate, allocate that load among the various point and nonpoint sources, include a margin of safety, and address seasonality.

Twenty (20) waterbodies, listed on Tennessee's Final 2004 303(d) list as not supporting designated use classifications due, in part, to discharge of E. coli from municipal point sources, collection system failures, pasture grazing, and illicit connections to storm sewers, are addressed in the TMDL. The TMDL utilizes Tennessee's general water quality criteria, recently collected site specific water quality data, continuous flow data from a USGS discharge monitoring station located in the Hiwassee River watershed, and a calibrated dynamic water quality model to establish allowable loadings of E. coli which will result in reduced in-stream concentrations and attainment of water quality standards. The TMDL requires reductions on the order of 54% - 96% for the impaired waterbodies.

The proposed Hiwassee River pathogen TMDL document can be downloaded from the following website:

http://www.state.tn.us/environment/wpc/tmdl/

Technical questions regarding this TMDL should be directed to the following members of the Division of Water Pollution Control staff:

Dennis M. Borders, P.E., Watershed Management Section Telephone: 615-532-0706

Sherry H. Wang, Ph.D., Watershed Management Section Telephone: 615-532-0656

Persons wishing to comment on the proposed TMDL are invited to submit their comments in writing no later than December 26, 2005 to:

Division of Water Pollution Control Watershed Management Section 7th Floor L & C Annex 401 Church Street Nashville, TN 37243-1534

All comments received prior to that date will be considered when revising the TMDL for final submittal to the U.S. Environmental Protection Agency.

The TMDL and supporting information are on file at the Division of Water Pollution Control, 7th Floor L & C Annex, 401 Church Street, Nashville, Tennessee. They may be inspected during normal office hours. Copies of the information on file are available on request.